淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2707201008245800
中文論文名稱 利用相分離法製備多孔型高分子平板薄膜及中空纖維薄膜之研究
英文論文名稱 Formation of Porous Polymeric Flat and Hollow-fiber Membranes by Phase Separation Methods
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系博士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 張旭賢
研究生英文姓名 Hsu-Hsien Chang
學號 894360014
學位類別 博士
語文別 英文
口試日期 2010-06-09
論文頁數 209頁
口試委員 指導教授-鄭廖平
委員-楊台鴻
委員-陳信龍
委員-董崇民
委員-林達鎔
委員-賴偉淇
委員-鄭廖平
中文關鍵字 多孔型薄膜  中空纖維薄膜  相分離法  聚偏二氟乙烯 
英文關鍵字 porous membrane  hollow fiber membrane  phase separation methods  poly(vinylidene fluoride) 
學科別分類 學科別應用科學化學工程
學科別應用科學材料工程
中文摘要 本研究主要探討各種相分離法所製備之多孔型高分子平板薄膜及中空纖維薄膜。首先以相分離法(phase separation methods)為製作多孔型高分子薄膜的主要基調,分別利用非溶劑誘導相分離法(non-solvent induced phase separation;NIPS)、熱誘導相分離法(thermal induced phase separation;TIPS)及冷溶劑誘導相分離法(cold-solvent induced phase separation;CIPS)製備多孔型高分子平板薄膜,並一一研究討論。本研究另於聚偏二氟乙烯(PVDF)薄膜之結晶型態做進一步的研究,利用非溶劑誘導相分離法來製作PVDF薄膜,藉由改變不同極性的溶劑(DMF、DMSO、TEP)與一系列不同碳數的醇類(C1~C8)非溶劑當作變因,探討成膜過程中極性溶劑與不同碳數的醇類非溶劑分別所扮演的角色,並推論出其對PVDF薄膜結晶型態的影響。此外,利用摻合溶洗法(template-leaching method)將氟系二成分共聚物(Kynar 2750)摻合同樣是氟系之三成分共聚物(Kynar 9301),並溶洗出三成分共聚物而製成Poly(VDF-co-HFP)多孔型薄膜,探討溶洗之溶劑濃度與溫度效應之影響。然後將所有疏水之平板型高分子多孔薄膜應用於薄膜蒸餾程序。最後,本研究亦以非溶劑誘導相分離法利用中空纖維紡絲模組製備中空纖維薄膜並加以探討有關內部非溶劑與外部非溶劑對於成膜之影響。
英文摘要 In this research we focus on investigations of the formation of porous polymeric flat-sheet and hollow fiber membranes by phase separation methods. First, flat-sheet pourse membrames are prepared by non-solvent induced phase separation (NIPS), thermal induced phase separation (TIPS), and cold-solvent induced phase separation (CIPS) methods. The mechanisms for membrane formation by varios methods are discussed. Next, formation of microporous PVDF membranes by precipitation of casting dopes made from different solvents (DMF, TEP and DMSO) in different alcohol baths (methanol, 1-propanol, isopropanol, 1-butanol and 1-octanol) are reported. The effects of solvents’ polarities and alcohols’ carbon number, on the crystal types of the formed PVDF membranes are discussed. In addition, template-leaching method is used to prepare microporous poly(VDF-co-HFP) membranes. A composite film consists of poly(VDF-co-HFP) and poly(VDF-co- TFE-co-HFP) is prepared by common solution blending-drying method. Then, the terpolymer is leached out in an acetone aqueous solution to yield a microporous membrane. By controlling the terpolymer content in the blend and the leaching condition, membranes with different porous structures and porosity are obtained. These hydrophobic flat membranes are applied to membrane distillation. Finally, pourse polymeric hollow fiber membrames are prepared by NIPS spinning process with special consideration on the effects of inner and outer non-solvent.
論文目次 論文提要內容 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES XIII
CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND 1
1.2 POLYMERIC MEMBRANES PREPARED BY PHASE SEPARATION METHODS 3
1.3 HOLLOW FIBER MEMBRANES 5
1.4 SCOPES OF THIS REPORT 7
CHAPTER TWO
PHASE SEPARATION METHODS AND TEMPLATE-LEACHING PROCESS FOR MEMBRANE FORMATION
2.1 INTRODUCTION 9
2.2 NON-SOLVENT INDUCED PHASE SEPARATION 10
2.2.1 PHASE BEHAVIOR NON-SOLVENT/SOLVENT/POLYMER SYSTEM 11
2.2.2 MORPHOLOGY OF MEMBRANES FORMED BY NIPS 13
2.2.3 THE LIQUID-LIQUID DEMIXING PHASE BOUNDARY 17
2.2.4 THE CRYSTALLIZATION EQUILIBRIUM 19
2.3 THERMAL INDUCED PHASE SEPARATION 20
2.3.1 LIQUID-LIQUID DEMIXING 21
2.3.2 SOLID-LIQUID PHASE SEPARATION 24
2.4 TEMPLATE-LEACHING METHOD 26
CHAPTER THREE
FORMATION OF MICROPOROUS EVOH AND NYLON-12 MEMBRANES BY TIPS, NIPS AND CIPS
3.1 INTRODUCTION 27
3.2 METHODS 29
3.2.1 MATERIAL 29
3.2.2 PHASE DIAGRAM DETERMINATION 30
3.2.3 MEMBRANE PREPARATION 31
3.2.4 SEM OBSERVATION 33
3.3 FORMATION OF POROUS EVOH MEMBRANES VIA TIPS 34
3.3.1 PHASE DIAGRAM OF THE EVOH/1,3-PROPANEDIOL SYSTEM 34
3.3.2 MORPHOLOGIES OF EVOH MEMBRANES FORMED BY TIPS 36
3.3.3 SUMMARY 50
3.4 FORMATION OF POROUS EVOH AND PA12 MEMBRANES VIA CIPS 51
3.4.1 MORPHOLOGIES OF EVOH MEMBRANES FORMED BY CIPS 51
3.4.2 MORPHOLOGIES OF PA12 MEMBRANES FORMED BY TIPS AND CIPS 54
3.4.3 MECHANISM OF POURSE MEMBRANE FORMATION BY CIPS 57
3.4.4 SUMMARY 61
CHAPTER FOUR
FORMATION AND CHARACTERIZATION OF MICROPOROUS PVDF MEMBRANES BY NIPS
4.1 INTRODUCTION 63
4.2 METHODS 64
4.2.1 MATERIAL 64
4.2.2 PHASE DIAGRAM DETERMINATION 65
4.2.3 MEMBRANE PREPARATION AND CHARACTERIZATION 66
4.3 IMMERSE IN DIFFERENT ALCOHOL BATHS AT DMF SYSTEM 73
4.3.1 PHASE DIAGRAMS OF THE ALCOHOL/DMF/PVDF SYSTEMS 73
4.3.2 MORPHOLOGIES OF PVDF MEMBRANES 74
4.3.3 FTIR-ATR, XRD AND DSC ANALYSES OF THE MEMBRANES 80
4.3.4 PROPERTIES AND PERFORMANCE OF THE MEMBRANES 97
4.3.5 SUMMARY 99
4.4 SOLVENT EFFECT FOR DIFFERENT ALCOHOL BATHS 100
4.4.1 PHASE DIAGRAMS OF THE DIFFERENT SYSTEMS 100
4.4.2 MORPHOLOGIES OF PVDF MEMBRANES 102
4.4.3 FTIR-ATR, XRD AND DSC ANALYSES OF THE MEMBRANES 108
4.4.4 SUMMARY 120
4.5 APPLICATION OF MICROPOROUS MEMBRANES IN MEMBRANE DISTILLATION 121
4.5.1 DIRECT CONTACT MEMBRANE DISTILLATION METHOD 121
4.5.2 FORMATION OF PVDF MEMBRANES IN VARIOUS TEP AQUEOUS BATHS 124
4.5.3 HYDROPHOBIC POROUS MEMBRANES FOR MD 129
4.5.4 SUMMARY 134
CHAPTER FIVE
PREPARATION OF MICROPOROUS POLY(VDF-CO-HFP) MEMBRANES BY TEMPLATE-LEACHING METHOD
5.1 INTRODUCTION 135
5.2 METHODS 136
5.2.1 MATERIAL 136
5.2.2 MEMBRANE PREPARATION AND CHARACTERIZATION 137
5.3 FORMATION OF MEMBRANES BY TEMPLATE-LEACHING METHOD 141
5.3.1 LEACHING EFFICIENCY FOR VARIOUS BLENDED FILMS 141
5.3.2 MORPHOLOGY AND CONTACT ANGLE OF MEMBRANES 147
5.3.3 XRD AND DSC ANALYSES OF THE MEMBRANES 160
5.3.4 POROSITY, TENSILE STRENGTH, WATER FLUX AND DCMD OF THE MEMBRANES 163
5.3.5 SUMMARY 168
CHAPTER SIX
FORMATION OF MICROPOROUS PVDF AND NYLON-66 HOLLOW-FIBER MEMBRANES BY NIPS SPINNING PROCESS
6.1 INTRODUCTION 169
6.2 METHODS 170
6.2.1 MATERIAL 170
6.2.2 PHASE DIAGRAM DETERMINATION 170
6.2.3 HOLLOW FIBER MEMBRANE PREPARATION AND SEM OBSERVATION 171
6.2.3 HOLLOW FIBER MEMBRANE PREPARATION AND SEM OBSERVATION 171
6.3 RESULTS AND DISCUSSION 173
6.3.1 MORPHOLOGIES OF PVDF HOLLOW FIBER AND FLAT MEMBRANES 173
6.3.2 MORPHOLOGIES OF NYLON 66 HOLLOW FIBER MEMBRANE 186
6.3.3 SUMMARY 190
CHAPTER SEVEN REFERENCE 191
APPENDIX A: FORMATION OF POROUS PA12 MEMBRANES VIA NIPS 197
APPENDIX B: 作者簡歷與論文著述 205

FIGURE 1-1: SCHEMATIC REPRESENTATION OF MEMBRANE CROSS SECTIONS. 2
FIGURE 1-2: SCHEMATIC REPRESENTATION OF THE SCOPES OF THIS WORK. 8
FIGURE 2-1: SCHEME OF MASS TRANSFER OCCURRING AT THE FILM/BATH INTERFACE. 11
FIGURE 2-2: THE CLASSICAL PHASE DIAGRAM OF THE TERNARY SYSTEM. 13
FIGURE 2-3: SCHEMATIC REPRESENTATION OF THE STAGES OF THE LIQUID-LIQUID DEMIXING PROCESS. (LEFT) AN OPEN-CELL STRUCTURE OF SPINODAL DECOMPOSITION; (RIGHT) CELLULAR PORE. 14
FIGURE 2-4: SCHEMATIC REPRESENTATION OF THE STAGES OF CRYSTALLIZATION. 1: TWIG- OR PETAL-LIKE STRUCTURE; 2 AND 3: SHEAF-LIKE STRUCTURES; 4: FULL-GLOBULAR STRUCTURE. 15
FIGURE 2-5: SEM MORPHOLOGIES OF CRYSTALLIZATION AND LIQUID-IQUID DEMIXING ARE OCCURRING ON THE SAME TIMESCALE. (LEFT) LOWER NUCLEATION DENSITY; (RIGHT) HIGHER NUCLEATION DENSITY. 17
FIGURE 2-6: (A) DEMIXING OF A BINARY POLYMER SOLUTION WITH DECREASING THE TEMPERATURE. TC IS THE CRITICAL TEMPERATURE. (B) SCHEMATIC TEMPERATURE-COMPOSITION PHASE DIAGRAM OF POLYMER SOLUTION. 22
FIGURE 2-7: TWO POSSIBLE TYPES OF PHASE DIAGRAMS FOR SEMICRYSTALLINE POLYMER/SOLVENT MIXTURES: (A) UCST LOCATED ABOVE THE MELTING POINT IN A POOR SOLVENT; (B) UCST LOCATED BELOW THE MELTING POINT IN A GOOD SOLVENT. 25
FIGURE 3-1: SCHEMATIC REPRESENTATION OF APPARATUS FOR SAMPLE PREPARATION. 33
FIGURE 3-2: PHASE DIAGRAM IN EVOH/1,3-PROPANEDIOL SYSTEM. 35
FIGURE 3-3: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING BATH AT 45 OC). POLYMER CONCENTRATION IN THE DOPE: (A) 20 WT% AND (B) 30 WT%. 38
FIGURE 3-4: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING BATH AT 25 OC). POLYMER CONCENTRATION IN THE DOPE: (A) 20 WT% AND (B) 30 WT%. 39
FIGURE 3-5: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES WITH POLYMER CONCENTRATION 20 WT% AT (A) 60 OC, (B) 45 OC, (C) 25 OC, AND (D) 5 OC COOLING BATH; (E) HIGHER MAGNIFICATION OF (D). 40
FIGURE 3-6: PHASE DIAGRAM IN EVOH/DILUENT SYSTEM. (A) EFFECT OF COOLING BATH TEMPERATURE AND (B) EFFECT OF EVOH CONCENTRATION IN THE DOPE. 42
FIGURE 3-7: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING TEMPERATURE AT 25 OC) WITH AGING OF THE DOPE AT 80 OC. AGING TIME: (A) 1 HR; (B) 2 HR. 45
FIGURE 3-8: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING TEMPERATURE AT 5 OC) WITH AGING OF THE DOPE AT 80 OC. AGING TIME: (A) 1 HR; (B) 2 HR. 46
FIGURE 3-9: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING TEMPERATURE AT 25 OC) WITH AGING OF THE DOPE AT 60 OC. AGING TIME: (A) 1 HR; (B) 2 HR. 47
FIGURE 3-10: CROSS SECTIONAL MORPHOLOGIES OF THE EVOH MEMBRANES (COOLING TEMPERATURE AT 5 OC) WITH AGING OF THE DOPE AT 60 OC. AGING TIME: (A) 1 HR; (B) 2 HR. 48
FIGURE 3-11: PHASE DIAGRAM IN EVOH/DILUENT SYSTEM. (A) EFFECT OF AGING OF THE DOPE AT 80 OC AND (B) EFFECT OF AGING OF THE DOPE AT 60 OC. 49
FIGURE 3-12: (A) CROSS SECTIONAL MORPHOLOGY OF THE EVOH MEMBRANE FORMED BY IMMERSING A 20 WT% EVOH/1,3-PROPANEDIOL DOPE IN 1,3-PROPANEDIOL BATH AT 25 OC, AND (B) HIGH MAGNIFICATION OF (A). 52
FIGURE 3-13: (A) TOP SURFACE AND (B) BOTTOM SURFACE MORPHOLOGIES OF THE EVOH MEMBRANE FORMED BY IMMERSING A 20 WT% EVOH/1,3-PROPANEDIOL DOPE IN 1,3-PROPANEDIOL BATH AT 25 OC. 53
FIGURE 3-14: PHASE DIAGRAM IN PA12/FA SYSTEM. 55
FIGURE 3-15: (A) CROSS SECTIONAL MORPHOLOGY OF THE PA12 MEMBRANE FORMED BY TIPA METHOD USING A 20 WT% PA12/FA DOPE AT THE 10 OC COOLING TEMPERATURE BATH, AND (B) CROSS SECTIONAL MORPHOLOGY OF THE PA12 MEMBRANE FORMED BY IMMERSING A 20 WT% PA12/FA DOPE IN FA BATH AT 10 OC. 56
FIGURE 3-16: MECHANISM OF POURSE MEMBRANE FORMATION BY CIPS. (A) SCHEME OF MASS AND THERMAL TRANSFER OCCURRING AT THE FILM/BATH INTERFACE; (B) THERMAL TRANSFER <<< MASS TRANSFER; (C) THERMAL TRANSFER >>> MASS TRANSFER; (D) THERMAL TRANSFER ~ MASS TRANSFER. 59
FIGURE 4-1: PHASE DIAGRAMS OF THE ALCOHOL/DMF/PVDF SYSTEMS. ◆■●▲▼: GELATION POINTS. LINE ‘ABC’: BINODAL FOR THE 1-OCTANOL/DMF/PVDF SYSTEM. 74
FIGURE 4-2: CROSS SECTIONAL MORPHOLOGIES OF THE MEMBRANES PREPARED BY IMMERSING A 21 WT% PVDF DOPE IN DIFFERENT ALCOHOL BATHS. BATH: (A) METHANOL, MEMBRANE FM; (B) 1-PROPANOL, MEMBRANE FP; (C) ISOPROPANOL, MEMBRANE FI; (D) 1-BUTANOL, MEMBRANE FB; (E) 1-OCTANOL, MEMBRANE FO. 77
FIGURE 4-3: POM IMAGES OF THE MEMBRANES PREPARED BY IMMERSING A 21 WT% PVDF DOPE IN (A) METHANOL; (B) 1-OCTANOL. 78
FIGURE 4-4: MORPHOLOGY OF THE MEMBRANE FM. MAGNIFICATION: (A) 30 KX; (B) 100KX; (C) AFM. 81
FIGURE 4-5: MORPHOLOGY OF THE MEMBRANE FO. MAGNIFICATION: (A) 30 KX; (B) 100KX; (C) AFM. 82
FIGURE 4-6: MORPHOLOGIES OF THE BOTTOM SURFACES OF THE MEMBRANES (A) FM AND (B) FO. 83
FIGURE 4-7: FTIR-ATR SPECTRA OF PVDF MEMBRANES PREPARED BY IMMERSION- PRECIPITATION IN DIFFERENT ALCOHOL BATHS. 84
FIGURE 4-8: XRD DIFFRACTOGRAMS OF PVDF MEMBRANES PREPARED BY IMMERSION- PRECIPITATION IN DIFFERENT BATHS: (A) DIFFRACTION PATTERNS; (B) AMORPHOUS AND CRYSTALLINE REGIONS BEING SORTED BY CURVE FITTING TECHNIQUE FOR THE MEMBRANE FM. -----: AMORPHOUS REGION. 87
FIGURE 4-9: DSC THERMOGRAMS OF PVDF MEMBRANES PRECIPITATED FROM DIFFERENT ALCOHOL BATHS. 88
FIGURE 4-10: MORPHOLOGIES OF THE TWO TYPES. 88
FIGURE 4-11: (A) PHASE DIAGRAMS OF THE ALCOHOL-DMF-PVDF SYSTEMS; POINT A: THE 10 WT% DMF/PVDF SOLUTION, POINT B AND C: THE DIFFERENT WEIGHT PER CENT ALCOHOL/DMF/PVDF SOLUTIONS. POINT: METHANOL, BM OR CM; 1-PROPANOL, BP OR CP; ISOPROPANOL, BI OR CI; 1-BUTANOL, BB OR CB; 1-OCTANOL, BO OR CO. (B) 19F-NMR SPECTRA OF THE DIFFERENT ALCOHOL/DMF/PVDF OF POINT B SOLUTIONS AT 25 OC. (C) 19F-NMR SPECTRA OF THE DIFFERENT ALCOHOL/DMF/PVDF OF POINT C SOLUTIONS AT 25 OC. ONLY THE PART LOCATED BETWEEN -90 TO -98 PPM IS SHOWN. 95
FIGURE 4-12: THE VARIATIONS OF F(T) OF PVDF MEMBRANES PREPARED BY IMMERSION-PRECIPITATION IN DIFFERENT ALCOHOL BATHS. 96
FIGURE 4-13: THE PROPERTIES AND PERFORMANCE OF PVDF MEMBRANES PREPARED BY IMMERSION-PRECIPITATION IN DIFFERENT ALCOHOL BATHS: (A) POROSITY; (B) PURE WATER FLUX; (C) SHRINKAGE. 98
FIGURE 4-14: PHASE DIAGRAMS OF (A) THE ALCOHOL/TEP/PVDF AND (B) THE ALCOHOL/ DMSO/PVDF SYSTEMS. ◆■●▲▼: GELATION POINTS. 101
FIGURE 4-14: (C) PHASE DIAGRAMS OF THE 1-OCTANOL/SOLVENT/PVDF SYSTEMS. 102
FIGURE 4-15: CROSS SECTIONAL MORPHOLOGIES OF THE MEMBRANES PREPARED BY IMMERSING A 21 WT% PVDF/TEP DOPE IN DIFFERENT ALCOHOL BATHS. BATH: (A) METHANOL, MEMBRANE TM; (B) HIGH MAGNIFICATION OF (A); (C) 1-OCTANOL, MEMBRANE TO. 104
FIGURE 4-16: MORPHOLOGY OF THE MEMBRANE TO. MAGNIFICATION: (A) 30 KX; (B) 100KX. 105
FIGURE 4-17: CROSS SECTIONAL MORPHOLOGIES OF THE MEMBRANES PREPARED BY IMMERSING A 21 WT% PVDF/DMSO DOPE IN DIFFERENT ALCOHOL BATHS. BATH: (A) METHANOL, MEMBRANE SM; (B) HIGH MAGNIFICATION OF (A); (C) 1-OCTANOL, MEMBRANE SO. 106
FIGURE 4-18: MORPHOLOGY OF THE MEMBRANE SO. MAGNIFICATION: (A) 30 KX; (B) 100KX. 107
FIGURE 4-19: FTIR-ATR SPECTRA OF PVDF MEMBRANES PREPARED BY IMMERSION- PRECIPITATION IN DIFFERENT ALCOHOL BATHS. (A) TEP SYSTEM; (B) DMSO SYSTEM. 109
FIGURE 4-20: XRD DIFFRACTOGRAMS OF PVDF MEMBRANES PREPARED BY IMMERSION- PRECIPITATION IN DIFFERENT ALCOHOL BATHS: (A) TEP SYSTEM; (B) DMSO SYSTEM. 110
FIGURE 4-21: AMORPHOUS AND CRYSTALLINE REGIONS BEING SORTED BY CURVE FITTING TECHNIQUE FOR THE MEMBRANES (A) TM AND (B) SM. -----: AMORPHOUS REGION. 113
FIGURE 4-22: THE VARIATIONS OF F(T) OF PVDF MEMBRANES PREPARED BY IMMERSION-PRECIPITATION IN DIFFERENT ALCOHOL BATHS. (A) TEP SYSTEM; (B) DMSO SYSTEM. 114
FIGURE 4-23: 19F-NMR SPECTRA OF THE (A) TEP/PVDF AND (B) DMSO/PVDF 21 WT% HOMOGENEOUS SOLUTION AT 25 OC 1 HR. ONLY THE PART LOCATED BETWEEN -85 TO -105 PPM IS SHOWN. 118
FIGURE 4-24: FTIR SPECTRA OF 5 WT% PVDF DOPES DISSOLVED IN (A) TEP AND (B) DMSO AT DIFFERENT AGE TIME. FTIR SPECTRA OF 21 WT% PVDF DOPES DISSOLVED IN (C) TEP AND (D) DMSO AT DIFFERENT AGE TIME. 119
FIGURE 4-25: SCHEMATIC DRAWING OF A HYDROPHOBIC POROUS MEMBRANE IN DIRECT CONTACT MEMBRANE DISTILLATION METHOD. 122
FIGURE 4-26: (A) THE SCHEMATIC REPRESENTATION OF DIRECT CONTACT MEMBRANE DISTILLATION SETUP. (B) THE SELECTED POROUS MEMBRANE WAS TIGHTLY CLAMPED BETWEEN TWO STAINLESS STEEL CELLS, THE DONOR (HOT AQUEOUS NACL SOLUTION) AND THE RECEPTOR (COLD WATER). 123
FIGURE 4-27: THE CROSS-SECTION MORPHOLOGIES OF MICROPOROUS PVDF MEMBRANES. (A) COAGULATION BATH: PURE WATER; (B) HIGH MAGNIFICATION OF (A). 126
FIGURE 4-28: THE CROSS-SECTION MORPHOLOGIES OF MICROPOROUS PVDF MEMBRANES. COAGULATION BATH: (A) 50 WT% TEP IN WATER AND (B) 70 WT% TEP IN WATER. 127
FIGURE 4-29: TOP SURFACE MORPHOLOGIES OF MICROPOROUS PVDF MEMBRANES. COAGULATION BATH: (A) PURE WATER; (B) 50 WT% TEP IN WATER; (C) 70 WT% TEP IN WATER. 128
FIGURE 4-30: THE MORPHOLOGIES OF MICROPOROUS COMMERCIAL PVDF MEMBRANE. THE TOP SURFACE (A) AND THE CROSS-SECTION (B) OF THE MEMBRANE. 131
FIGURE 4-31: THE MORPHOLOGIES OF MICROPOROUS COMMERCIAL PTFE MEMBRANE. THE TOP SURFACE (A) AND THE CROSS-SECTION (B) OF THE MEMBRANE; (C) HIGH MAGNIFICATION OF (B). 132
FIGURE 5-1: LEACHING EFFICIENCY OF PVH MEMBRANES PREPARED FROM BLENDS WITH DIFFERENT PVTH CONTENT. 144
FIGURE 5-2: 300 MHZ 19F-NMR SPECTRA OF PVH, PVTH, AND PREPARED MEMBRANES (D6-ACETONE SOLVENT). (A) PRISTINE PVH; (B) PRISTINE PVTH; (C) MEMBRANE C80; (D) MEMBRANE C50. 145
FIGURE 5-3: (A) THE CROSS-SECTION MORPHOLOGY OF THE MEMBRANE C100; (B) HIGH MAGNIFICATION OF (A). 151
FIGURE 5-4: MORPHOLOGY OF THE MEMBRANE C80. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) OVERALL CROSS-SECTION; (D) HIGH MAGNIFICATION OF (C); (E) HIGH MAGNIFICATION NEAR THE TOP SURFACE. 153
FIGURE 5-5: MORPHOLOGY OF THE MEMBRANE C70. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) OVERALL CROSS-SECTION; (D) HIGH MAGNIFICATION OF (C); (E) HIGH MAGNIFICATION NEAR THE TOP SURFACE. 155
FIGURE 5-6: MORPHOLOGY OF THE MEMBRANE C55. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) OVERALL CROSS-SECTION; (D) HIGH MAGNIFICATION OF (C). 156
FIGURE 5-7: MORPHOLOGY OF THE MEMBRANE C50. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) OVERALL CROSS-SECTION; (D) HIGH MAGNIFICATION OF (C). 158
FIGURE 5-8: XRD DIFFRACTOGRAMS OF PVH MEMBRANES PREPARED FROM BLENDS WITH DIFFERENT PVTH CONTENT. (A) DIFFRACTION PATTERNS; (B) AMORPHOUS AND CRYSTALLINE REGIONS BEING SORTED BY CURVE FITTING TECHNIQUE FOR THE MEMBRANE C50. 161
FIGURE 5-9: DSC THERMOGRAMS OF PVH MEMBRANES PREPARED FROM BLENDS WITH DIFFERENT PVTH CONTENT. 162
FIGURE 5-10: POROSITY (A) AND TENSILE STRENGTHS AT BREAK (B) OF VARIOUS PVH MEMBRANES. 164
FIGURE 5-11: WATER FLUXES OF PVH MEMBRANES PREPARED FROM BLENDS WITH DIFFERENT PVTH CONTENT. 166
FIGURE 6-1: SCHEMATIC DRAWING OF HOLLOW FIBER SPINNING PROCESS. 1: INNER COAGULATION SOLUTION; 2: HOLLOW FIBER SPINNING SOLUTION; 3: OUTER COAGULATION BATH; P: PUMPS. (A) SCHEMATIC DRAWING OF FLUIDS IN SPINNERET AND INNER COAGULATION BATH: 1. INNER NON-SOLVENT FLUID; 2. POLYMER SOLUTION. (B) CROSS SECTION OF THE TUBE AND THE SPINNERET. 172
FIGURE 6-2: TERNARY PHASE DIAGRAM FOR WATER/DMF/PVDF SYSTEM AT 25 OC. 174
FIGURE 6-3: MORPHOLOGIES OF THE CROSS SECTION, TOP AND BOTTOM SURFACE PREPARED BY IMMERSING A 21WT% PVDF/DMF DOPE IN PURE WATER. (A), (B), (C) CROSS SECTION; (D) TOP SURFACE; (E), (F) BOTTOM SURFACE. 175
FIGURE 6-4: SCHEMATIC REPRESENTATION OF THE GROWTH OF MACROVOIDS AT DIFFERENT TIMES DURING DEMIXING. 179
FIGURE 6-5: SCHEMATIC REPRESENTATION OF A POLYMER SOLUTION/BATH INTERFACE. (A) FORMATION OF THE FLAT MEMBRANES BY NIPS METHOD; (B) FORMATION OF THE HOLLOW FIBER MEMBRANES BY NIPS SPINNING PROCESS. 181
FIGURE 6-6: SCHEMATIC REPRESENTATION OF THE FORMATION OF THE PVDF HOLLOW FIBER MEMBRANE BY NIPS SPINNING PROCESS. 182
FIGURE 6-7: (A) OUTER SURFACE CROSS SECTION VIEW OF PVDF MEMBRANE; (B) OUTER SURFACE VIEW OF PVDF MEMBRANE; (C) INNER SURFACE CROSS SECTION VIEW OF PVDF MEMBRANE. 184
FIGURE 6-8: COMPOSITIONS OF DOPES AND BATHS IN WATER/FORMIC ACID/NYLON 66 SYSTEM: DOPE O: NYLON 66: 17.9 WT%, FORMIC ACID: 78.8 WT%, AND WATER: 3.3 WT%; DOPE G: NYLON 66: 17.9 WT%, FORMIC ACID: 68.57 WT%, AND WATER: 13.53 WT%; BATH H: PURE WATER; BATH S: 40 WT% FORMIC ACID. 186
FIGURE 6-9: (A) OVERALL CROSS SECTION VIEW OF GHH MEMBRANE; (B) INNER CROSS SECTION VIEW OF GHH MEMBRANE; (C) BULK CROSS SECTION REGION OF GHH MEMBRANE; (D) OUTER SURFACE CROSS SECTION VIEW OF GHH MEMBRANE; (E) OUTER SURFACE VIEW OF GHH MEMBRANE. 188
FIGURE A-1: (A) PHASE DIAGRAM OF THE WATER/FA/PA12 SYSTEM; (B) 3-D PHASE DIAGRAM OF THE WATER/FA/PA12 SYSTEM. 198
FIGURE A-2: SEM MICROGRAPHS OF THE PA12 MEMBRANE. BATH: 10 OC PURE WATER, DOPE: 20 WT% PA12 IN FA. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) CROSS SECTION. 201
FIGURE A-3: SEM MICROGRAPHS OF THE PA12 MEMBRANE. BATH: 25 OC PURE WATER, DOPE: 20 WT% PA12 IN FA. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) CROSS SECTION. 202
FIGURE A-4: SEM MICROGRAPHS OF THE PA12 MEMBRANE. BATH: 40 OC PURE WATER, DOPE: 20 WT% PA12 IN FA. (A) TOP SURFACE; (B) BOTTOM SURFACE; (C) CROSS SECTION. 203
FIGURE A-5: SEM MICROGRAPHS OF THE TOP SURFACE OF THE PA12 MEMBRANE. BATH : 90 WT% FA, DOPE: 20 WT% PA12 IN FA. AT THE (A) 10 OC; (B) 25 OC; (C) 40 OC BATHS. 204


List of Tables:
TABLE 4-1: PREPARATION CONDITIONA AND PROPERTIES OF PVDF MEMBRANES...................67
TABLE 4-2: VIBRATIONAL MODE WAVENUMBER (CM-1) OF PVDF...........................................69
TABLE 4-3: CRYSTAL PLANES OF THE PVDF CRYSTAL TYPES AND THEIR CORRESPONDING 2θ PEAKS......................................................................................................................70
TABLE 4-4: PREPARATION CONDITIONA AND PROPERTIES OF PVDF MEMBRANES...................75
TABLE 4-5: CRYSTALLINITY AND CRYSTAL TYPE OF PVDF MEMBRANES...............................86
TABLE 4-6: SOLUBILITY PARAMETERS, MOLAR VOLUMES AND DIPOLE MOMENTS OF SOLVENT AND NON-SOLVENTS................................................................................................96
TABLE 4-7: CRYSTALLINITY AND CRYSTAL TYPE OF PVDF MEMBRANES.............................112
TABLE 4-8: PREPARATION CONDITIONA AND PROPERTIES OF PVDF MEMBRANES................124
TABLE 4-9: THE PERMEATION FLUX AND REJECTION COEFFICIENT OF POROUS PVDF MEMBRANES..........................................................................................................130
TABLE 4-10: THE POROSITIES, TENSILE STRENGTH, CONTACT ANGLE, THE PERMEATION FLUX AND REJECTION COEFFICIENT OF POROUS PVDF MEMBRANES.............................133
TABLE: 5-1 PREPARATION CONDITIONS AND PROPERTIES FOR PVH MEMBRANES................138
TABLE: 5-2 ASSIGNMENTS OF 19F-NMR CHEMICAL SHIFTS FOR PVH AND PVTH................138
TABLE: 5-3 DEGREE OF SWELLING OF PVH AND PVTH........................................................142
TABLE: 5-4 CRYSTALLINITY AND CONTACT ANGLE OF PREPARED MEMBRANES....................148
TABLE: 5-5 PREPARATION CONDITIONA AND PROPERTIES OF PVDF MEMBRANES................167
參考文獻 1. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht/Boston/London (1991).
2. C. Güell, R.H. Davis, J. Membrane Sci., 119 (1996) 269.
3. A. Bottino, G. Capannelli, O. Monticelli, P. Piaggio, J. Membrane Sci., 166 (2000) 23.
4. C.Y. Kuo, H.N. Lin, H.A. Tsai, D.M. Wang, J.Y. Lai, Desalination, 233 (2008) 40.
5. K. Jian, P.N. Pintauro, J. Membrane Sci., 85 (1993) 301.
6. M. Tomaszewska, Desalination, 104 (1996) 1.
7. G.T. Caneba, D.S. Soong, Macromolecules, 18 (1985) 2538.
8. G.T. Caneba, D.S. Soong, Macromolecules, 18 (1985) 2545.
9. D.R. Lloyd, J.W. Barlow, AIChE Symp. Ser., 261 (1988) 28.
10. D.R. Lloyd, S.S. Kim, K.E. Kinzer, J. Membrane Sci., 64 (1991) 1.
11. P. Vandeweerdt, H. Berghmans, Y. Tervoort, Macromolecules, 24 (1991) 3547.
12. S.S. Kim, D.R. Lloyd, J. Membrane Sci., 64 (1991) 13.
13. S.P. Deshmukh, K.Li, J. Membrane Sci., 150 (1998) 75.
14. D.L. Wang, K. Li, W.K. Teo, J. Membrane Sci., 163 (1999) 211.
15. A. Bottino, G.R. Camera, G. Capannelli, S. Munari, J. Membrane Sci., 57 (1991) 1.
16. L.M. Yeow, Y.T. Liu, K. Li, J. Appl. Polym. Sci., 90 (2003) 2150.
17. L.M. Yeow, Y.T. Liu, K. Li, J. Appl. Polym. Sci., 92 (2004) 1782.
18. D.J. Lin, H.H. Chang, T.C. Chen, Y.C. Lee, L.P. Cheng, Eur. Polym. J., 42 (2006) 1581.
19. K.Y. Lin, D.M. Wang, J.Y. Lai, Macromolecules, 35 (2002) 6697.
20. S.G. Li, T. Boomgaard, C.A. Smolders, H. Strathmann, Macromolecules, 29 (1996) 2053.
21. X. Wang, L. Zhang, D. Sun, Q. An, H. Chen, J. Appl. Polym. Sci., 110 (2008) 1656.
22. D.L. Wang, K. Li, W.K. Teo, J. Membrane Sci., 178 (2000) 13.
23. H.A. Tsai, R.C. Ruaan, D.M. Wang, J.Y. Lai, J. Appl. Polym. Sci., 86 (2002) 166.
24. D.J. Lin, K. Beltsios, C.L. Chang, L.P. Cheng, J. Polym. Sci. Polym. Phys., 41 (2003) 1578.
25. L.P. Cheng, Macromolecules, 32 (1999) 6668.
26. D.J. Lin, K. Beltsios, T.H. Young, Y.S. Jeng, L.P. Cheng, J. Membrane Sci., 274 (2006) 64.
27. L.P. Cheng, T.H. Young, L. Fang, J.J. Gau, Polymer, 40 (1999) 2395.
28. S.P. Deshmukh, K. Li, J. Membrane Sci., 150 (1998) 75.
29. C.H. Shih, C.C. Gryte, L.P. Cheng, J. Appl. Polym. Sci., 96 (2005) 944.
30. L.P. Cheng, A.H. Dwan, C.C. Gryte, J. Polym. Sci. Polym. Phys., 32 (1994) 1183.
31. L.P. Cheng, A.H. Dwan, C.C. Gryte, J. Polym. Sci. Polym. Phys., 33 (1995) 211.
32. L.P. Cheng, A.H. Dwan, C.C. Gryte, J. Polym. Sci. Polym. Phys., 33 (1995) 223.
33. L.P. Cheng, D.J. Lin, C.H. ShiH, A.H. Dwan, C.C. Gryte, J. Polym. Sci. Polym. Phys., 37 (1999) 2079.
34. D.J. Lin, C.L. Chang, C.L. Chang, T.H. Chen, L.P. Cheng, J. Polym. Sci. Polym. Phys., 42 (2004) 830.
35. M. Shang, H. Matsuyama, T. Maki, M. Teramoto, D.R. Lloyd, J. Appl. Polym. Sci., 87 (2003) 853.
36. M. Shang, H. Matsuyama, T. Maki, M. Teramoto, D.R. Lloyd, J. Polym. Sci. Polym. Phys., 41 (2003) 194.
37. H. Matsuyama, T. Iwatani, Y. Kitamura, M. Teramoto, N. Sugoh, J. Appl. Polym. Sci., 79 (2001) 2449.
38. H. Matsuyama, T. Iwatani, Y. Kitamura, M. Teramoto, N. Sugoh, J. Appl. Polym. Sci., 79 (2001) 2456.
39. H. Matsuyama, K. Kobayashi, Y. Kitamura, M. Teramoto, H. Tsuruta, J. Appl. Polym. Sci., 82 (2001) 2583.
40. H. Matsuyama, T. Maki, M. Teramoto, K. Asano, J. Membrane Sci., 204 (2002) 323.
41. H. Matsuyama, S. Berghmans, D.R. Lloyd, J. Membrane Sci., 142 (1998) 213.
42. H. Matsuyama, S. Berghmans, D.R. Lloyd, Polymer, 40 (1999) 2289.
43. P.M. Atkinson, D.R. Lloyd, J. Membrane Sci., 171 (2000) 1.
44. P.M. Atkinson, D.R. Lloyd, J. Membrane Sci., 175 (2000) 225.
45. H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D.R. Lloyd, J. Membrane Sci., 179 (2000) 91.
46. W. Yave, R. Quijada, D. Serafini, D.R. Lloyd, J. Membrane Sci., 263 (2005) 146.
47. W. Yave, R. Quijada, D. Serafini, D.R. Lloyd, J. Membrane Sci., 263 (2005) 154.
48. S. Ramaswamy, A.R. Greenberg, W.B. Krantz, J. Membrane Sci., 210 (2002) 175.
49. T. Tanaka, D.R. Lloyd, J. Membrane Sci., 238 (2004) 65.
50. H.C. Vadalia, H.K. Lee, A.S. Myerson, K. Levon, J. Membrane Sci., 89 (1994) 37.
51. W.J. Lin, C.H. Lu, J. Membrane Sci., 198 (2002) 109.
52. A.G. Mikos, A.J. Thorsen, L.A. Czerwonka, Y. Bao, R. Langer, Polymer, 35 (1994) 1068.
53. Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Polymer Testing, 23 (2004) 791.
54. W. Ma, J. Zhang, Applied Surface Sci., 254 (2008) 5635.
55. C. Marega, A. Marigo, Eur. Polym. J., 39 (2003) 1713.
56. H. Tatsuno, Y. Koseai, S. Ando, Polymer, 49 (2008) 2709.
57. X. Li, Y. Wang, X. Lu, C. Xiao, J. Membrane Sci., 320 (2008) 477.
58. R.J.R. Gregorio, E.M. Ueno, J. Mater. Sci., 34 (1999) 4489.
59. W.M. Prest, D.J. Luca, J. Appl. Phys., 49 (1978) 5042.
60. M. Benz, W.B. Euler, J. Appl. Polym. Sci., 89 (2003) 1093.
61. A. Salimi, A.A. Yousefi, J. Polym. Sci. Polym. Phys., 42 (2004) 3487.
62. M.Zhang, A.Q. Zhang, B.K. Zhu, C.H. Du, Y.Y. Xu, J. Membrane Sci., 319 (2008) 169.
63. R. Souzy, B. Ameduri, S. Ahsen, H. Willner, G.A. Argüello, J. Fluorine. Chem., 123 (2003) 85.
64. J. Guiot, B. Ameduri, B. Boutevin, Macromolecules, 35 (2002) 8694.
65. T.R. Dargaville, M. Celina, R.L. Clough, Radiat. Phys. Chem., 75 (2006) 432.
66. C.W. Wilson, Jr.E.R. Santee, J. Polym. Sci. Part C, 8 (1965) 97.
67. T. Thenappan, U. Sankar, J. Mol. Liq., 126 (2006) 38.
68. J. Brandruo, E.H. Immergut, Polymer Handbook third edition, New York: John Wiley & Sons, Inc., 1989.
69. W. Ladawan, S. Anuvat, S. Pitt, Polym. Int., 53 (2004) 1851.
70. M.D. Barratt, Toxicology Letters, 80 (1995) 69.
71. M.D. Barratt, Toxicology in Vitro, 11 (1997) 1.
72. T. Clark, J.S. Murray, P. Lane, P. Politzer, J. Mol. Model, 14 (2008) 689.
73. W.J. Svirbely, J.J. Lander, This paper was presented in part at the spring meeting of the Washington Section of the American Chemical Society held at the University of Maryland, College Park, Maryland, May, (1945) 4121.
74. M. Findley, I&EC Process Design and Development, 6 (1967) 226.
75. M. Findley, AICHE J., 15 (1969) 483.
76. K.W. Lawson, D.R. Lloyd, J. Membrane Sci., 120 (1996) 111.
77. K.W. Lawson, D.R. Lloyd, J. Membrane Sci., 120 (1996) 123.
78. K.W. Lawson, D.R. Lloyd, J. Membrane Sci., 124 (1997) 1.
79. K. Smolders, A.C.M. Franken, Desalination, 72 (1989) 249.
80. F.A. Banat, J. Simandl, Desalination, 95 (1994) 39.
81. F.A. Banat, J. Simandl, Separ. Sci. Tech., 33 (1998) 201.
82. A. Burgoyne, M.M. Vahdati, Separ. Sci. Tech., 35 (2000) 1257.
83. Y.J. Wang, D.J. Kim, Electrochim. Acta., 52 (2007) 3181.
84. S. Huang, G. Wu, S. Chen, J. Membrane Sci. 293 (2007) 100.
85. K. Gao, X. Hu, C. Dai, T. Yi, Mat. Sci. Eng. B-Solid, 131 (2006) 100.
86. Z. Liu, P. Marechal, R. Jerome, Polymer, 38 (1997) 4925.
87. Y.T. Shieh, T.T. Hsiao, S.K. Chang, Polymer, 47 (2006) 5929.
88. S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Polymer, 42 (2001) 1407.
89. Z. Jiang, B. Carroll, K.M. Abraham, Electrochim. Acta., 42 (1997) 2667.
90. R. Souzy, B. Ameduri, S. Ahsen, H. Willner, G.A. Argüello, J. Fluorine. Chem. 123 (2003) 85.
91. J. Guiot, B. Ameduri, B. Boutevin, Macromolecules, 35 (2002) 8694.
92. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir, 12 (1996) 2125.
93. M. Callies, D. Quere, Soft Matter, 1 (2005) 55.
94. E. Chibowski, K. Terpilowski, Appl. Surface Sci., 256 (2009) 1573.
95. H.S. Huag, S.H. Chou, T.M. Don, W.C. Lai, L.P. Cheng, Polym. Adv. Technol., 20 (2009) 1082.
96. R.A.L. Jones, R.W. Richards, Polymers at surfaces and interfaces, Cambridge University press, (1999) 187.
97. D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Eur. Polym. J., 42 (2006) 2407.
98. D.M. Esterly, B.J. Love, J. Polym. Sci. Polym. Phys. 42 (2004) 91.
99. D. Jouannet, T.N. Pham, S. Pimbert, G. Levesque, Polymer, 38 (1997) 5137.
100. A. Subramania, N.T. Kalyana Sundaram, A.R. Sathiya Priya, G. Vijaya Kumar, J. Membrane Sci., 294 (2007) 8.
101. Y.J. Park, Y.S. Kang, C. Park, Eur. Polym. J., 41 (2005) 1002.
102. J.Y. Lai, F.C. Lin, T.T. Wu, D.M. Wang, J. Membrane Sci., 155 (1999) 31.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-12-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信