§ 瀏覽學位論文書目資料
系統識別號 U0002-2707200912472600
DOI 10.6846/TKU.2009.01429
論文名稱(中文) 利用氧化還原起始劑合成PMMA奈米顆粒及製備光可調控溫度敏感型共聚物以做為藥物控制釋放載體
論文名稱(英文) Synthesis of PMMA nanoparticles by a redox initiator system and the preparation of optical-controlled thermo-responsive carrier for drug delivery system
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系博士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 邱作沛
研究生(英文) Tso-Pei Chiu
學號 892360073
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2009-06-29
論文頁數 223頁
口試委員 指導教授 - 董崇民(tmdon@mail.tku.edu.tw)
委員 - 邱文英
委員 - 李文福
委員 - 陳崇賢
委員 - 李佳芬
委員 - 林達鎔
委員 - 鄭廖平
關鍵字(中) 乳化聚合
Cu2+/HSO3-
氧化還原起始系統
PMMA
裂解活化能
幾丁聚醣
溫度敏感性
氮-異丙基丙烯醯胺
聚甲基丙烯酸聚乙二醇酯
LCST
奈米金桿
關鍵字(英) emulsion polymerization
Cu2+/HSO3-
redox initiator
poly(methyl methacrylate)
apparent activity energy
chitosan
thermal-responsive
microgel
LCST
PNIPAAm
PEGMA
gold nanorod
第三語言關鍵字
學科別分類
中文摘要
本研究第一部分是以新型硫酸銅和亞硫酸氫鈉(Cu2+/HSO3-)氧化還原起始系統在不同反應溫度下(40oC~60oC)進行PMMA乳膠顆粒的合成,反應2小時後,轉化率可達85 %以上,而乳膠顆粒表面因有亞硫酸根而帶負電。利用SEM觀察乳膠顆粒的形態,結果顯示乳膠顆粒大小均一分佈,而且反應溫度越高其粒徑越小,粒徑平均大小從40oC的223 nm減少至60oC的165 nm之間,趨勢與光散射儀的結果一致。本研究闡明了Cu2+/HSO3-氧化還原起始系統的反應機制,首先銅離子與兩個亞硫酸氫根先形成配位複合物後,銅離子誘使亞硫酸氫根上的氫氧鍵斷鍵產生亞硫酸根自由基和氫原子自由基,氫原子自由基進一步地和銅離子進行氧化還原反應變成氫離子和亞銅離子,而亞硫酸根自由基則起始自由基聚合反應。另外,不同溫度下合成出的PMMA鏈段的立體異構性幾乎是相同的,大約是62~64 % rr、33~35 % mr和3 % mm,而且有幾乎相同的玻璃轉移溫度(125~127oC),其重量平均分子量在254,000和315,000之間。
固定反應溫度在60oC,改變起始劑中銅離子濃度以合成PMMA,實驗結果顯示不同銅離子濃度合成的PMMA,單體轉化率皆可達90 %以上,且Zeta電位皆低於-30 mV,代表乳液有不錯的穩定性。當銅離子濃度從2.0 mM增加至6.0 mM時(MMA維持1 M),SEM觀察結果顯示乳膠顆粒大小均一分佈,粒徑平均大小從182 nm增加到224 nm。所合成出來的PMMA乳膠顆粒的TGA曲線圖呈現兩階段裂解行為,其中第一階段屬不飽和末端基團PMMA-CR=CH2的熱裂解,第二階段屬飽和末端基團PMMA-H的熱裂解,而隨著銅離子濃度增加,會造成較多的不飽和末端基團的PMMA-CR=CH2生成,因此銅離子不僅僅可用來起始反應,同時又是鏈轉移劑用以終止成長中的高分子自由基鏈段。利用Ozawa法和Boswell法計算裂解活化能的結果顯示,PMMA-CR=CH2的裂解活化能在123.6~134.8 kJ/mol之間,而PMMA-H的裂解活化能在156.4~213.4 kJ/mol之間。
本研究第二部分利用具生物相容性的幾丁聚醣(CS)、溫度敏感性的氮-異丙基丙烯醯胺(NIPAAm)單體和可調整溫度敏感值(LCST)的聚甲基丙烯酸聚乙二醇酯(PEGMA)單體,以合成LCST值略高於生理溫度的幾丁聚醣-聚氮-異丙基丙烯醯胺-聚甲基丙烯酸聚乙二醇酯(CS-PN-PEG)共聚物。從批次反應系統所合成的CS-PN-PEG共聚物,因單體反應性的不同,會產生CS-PN-PEG和CS-PN共聚物,因而產生兩個相變化行為。以連續進料系統所合成的CS-PN-PEG共聚物,具有一階段的相變化行為。在pH4的環境下,當溫度到達LCST以上時,CS-PN-PEG共聚物能夠立即收縮,呈現應答快速的一階段相變化行為,隨PEGMA的含量增加,LCST值從33.0oC增加到39.7oC。在pH7的環境下,因CS的鏈展開幅度不大,呈現應答較為緩慢的一階段相變化行為,隨PEGMA的含量增加,LCST值從35.7oC增加到45oC。粒徑分析儀量測CS-PN-PEG共聚物所得的平均粒徑約在290 nm和450 nm之間。其次,利用化學還原法製備奈米金桿,藉由增加銀離子的含量,可使奈米金桿的縱向表面電漿共振吸收(SPL)有紅移的現象。當Ag+/Au3+G比值到達時,有最大的產率,SPL, max最大吸收波長在779 nm附近。利用控制奈米金桿成長的時間,可以得到SPL, max最大吸收波長在806 nm且吸收度為2.35的奈米金桿溶液。利用W/O乳化法製備CS/AuR/CS-PN-PEG10複合載體,可以成功的將奈米金桿包覆,經過載入藥物Diclofenac Sodium (DS),其承載率為0.669 %,包覆率為78.0 %。CS/AuR/CS-PN-PEG10複合藥物載體經雷射光照射後,導致藥物載體收縮而加速DS的釋放,經過24小時的藥物釋放後,藥物累積釋放百分比為58.9 %。
英文摘要
In the fisrt part of this study, emulsifier-free emulsion polymerization of MMA was initiated directly by the Cu2+/HSO3- redox system. Latex particles with negative charge due to the bonded anionic sulfite ion were successfully synthesized after 2 h of reaction at 40 to 60oC. SEM pictures showed an uniform particle size distribution, and the average size decreased from 223 nm to 165 nm by increasing reaction temperature from 40oC to 60oC. The initiation step in polymerization mechanism was proved to be a redox reaction, in which Cu2+ oxidized the bisulfite ion to produce anionic sulfite radical and proton. The produced anionic sulfite radical then initiated polymerization of MMA. Moreover, Cu2+ not only served as one component in the redox initiator system but also a chain transfer agent that terminated growing polymer chains to produce chains with unsaturated end group (PMMA-CR=CH2). For the present system, about 17 % of PMMA-CR=CH2 was produced. The tacticities of PMMA latex prepared at 40~60oC were almost the same, ca. 62~64 % rr, 33~35 % mr, and 3 % mm. These PMMA latexes had almost the same Tg, 125~127oC, regardless of the reaction temperatures and their weight-average molecular weight was in the range between 254,000 and 315,000. 
PMMA latex was synthesized in an emulsifier-free emulsion polymerization at 60oC using a Cu2+/HSO3- redox initiator system with different concentrations of Cu2+. The experimental results showed that the monomer conversion reached above 90 % for all systems. Zeta potential was all negative due to the bonded bisulfite ion and the magnitude was greater than 30 mV, providing the stability of PMMA emulsion. The morphology of the latex observed by SEM revealed an uniform particle size and the average particle size increased from 181.9 nm to 234.2 nm as the Cu2+ ion concentration increased from 2.0 mM to 6.0 mM in 1 M of MMA solution. Thermal degradation behavior of synthesized PMMA was studied by TGA, in which a two-stage degradation behavior was observed. These two stages were found to be caused by the degradation of unsaturated end group (PMMA-CR=CH2) and saturated end group (PMMA-H), respectively. In addition, the higher the concentration of Cu2+ ion, the more the proportion of PMMA-CR=CH2 in final product, and in turn giving more weight loss in the first-stage degradation. The copper ion not only acted as a role in the redox initiation, but also as a chain transfer agent to terminate growing polymer chains thus producing PMMA-CR=CH2. The apparent activation energies of the first stage (Ea1) and second stage (Ea2) were calculated by Ozawa’s method as well as Boswell’s method. The results showed that the apparent activation energies of PMMA-CR=CH2 were in the range between 123.6 kJ/mol and 134.8 kJ/mole, and those of PMMA-H were in the range between 156.4 kJ/mol and 213.4 kJ/mole.
In the second part this study, Chitosan-PNIPAAm-PEGMA (CS-PN-PEG) microgel copolymers were synthesized with biocompatible Chitosan (CS), thermal-responsive N-isopropylacrylamide (NIPAAm), and non-immunogenic Poly(ethylene glycol) metharcylate (PEGMA) by using ammonium persulfate (APS) as the initiator. In the batch reaction system, two-stage transition behaviors of CS-PN-PEG microgel copolymer were observed because the reaction product was composed of CS-PN-PEG and CS-PN copolymers due to the different monomer reactivity. In the continuous-feeding reaction system, one stage transition behavior of CS-PN-PEG microgel copolymer was observed. At pH4, the LCST values were shifted to higher temperatures from 33.0oC to 39.7oC with increasing the addition of hydrophilic PEGMA monomer. CS-PN-PEG microgel copolymer was immediately shrunk as the temperature reached to LCST due to the well-hydrophilic chitosan chains with excellent mobility tended to disentanglement at acidic condition. At pH7, the LCST values were shifted to higher temperatures from 35.7oC to 45oC with increasing hydrophilic PEGMA monomer. One stage transition behavior of CS-PN-PEG microgel copolymer exhibited slightly delay at neutrality due to the worse chain mobility on chitosan. The average particle size was in the range between 290 nm and 450 nm by using light scattering method. In addition, gold nanorods (AuR) were prepared by a seed-mediated growth approach. The longitudinal surface of plasmon resoncance (SPL) of AuR exhibited red-shifts with increasing the addition of silver ion. As Ag+/Au3+G ratio reached to 0.35, AuR had the maximum yield in which the SPL, max increased to 779 nm. AuR (SPL, max=806 nm and Abs. =2) was obtained by controlling the aging time. Moreover, CS/AuR/CS-PN-PEG10 complex carrier was obtained by using water in oil (W/O) method. After encapsulation of diclofenac sodium (DS), the loading was 0.669 % and encapsulation efficiency was 78 %. When CS/AuR/CS-PN-PEG10 complex carrier was irradiated by near IR light, they transformed the light into heat and thus raised temperature of the carrier. Subsequently, the thermal-responsive component undergoes phase transition causing volume shrinkage to squeeze out DS drug. After 24 hours, drug release amount reached 58.9%.
第三語言摘要
論文目次
目  錄
中文摘要	I
英文摘要	IV
目  錄	VII
圖  目  錄	XIII
表  目  錄	XXI
第一章 緒論	1
1.1 前言	1
1.2 研究動機	1
1.3 研究架構及目的	2
第二章 Cu2+/HSO3-氧化還原起始系統合成PMMA奈米顆粒之反應動力機構和熱裂解行為之研究	6
2.1 前言	6
2.2 乳化聚合理論與文獻回顧	7
2.2.1乳化聚合的反應機構	7
2.2.2無乳化劑乳化聚合的簡介	10
2.2.2.1無乳化劑乳化聚合的起源	10
2.2.2.2無乳化劑乳化聚合的成核機構	11
2.2.2.3影響無乳化劑乳化聚合的變因	15
2.2.3 與銅離子相關的文獻	18
2.3 PMMA熱裂解行為研究	19
2.3.1 PMMA的熱裂解反應機構	21
2.3.1.1 飽和末端雙鍵PMMA-CR=CH2的熱裂解反應機構	23
2.3.1.2 PMMA-H的熱裂解反應機構	27
2.3.1.3 PMMA-hh的熱裂解反應機構	27
2.3.2 PMMA在有氧氣的環境下和加入添加物的熱裂解反應機構	29
2.3.2.1 PMMA在有氧環境下的熱裂解反應機構	29
2.3.2.2 PMMA在有氧環境下加入金屬觸媒的熱裂解反應機構	32
2.4 Cu2+/HSO3-氧化還原起始劑系統製備PMMA乳膠顆粒	33
2.5 實驗方法與步驟	35
2.5.1實驗藥品	35
2.5.2 實驗設備	37
2.5.3 不同反應溫度合成PMMA乳膠顆粒	40
2.5.4 不同起始劑濃度合成PMMA乳膠顆粒	41
2.5.5 分析方法	43
2.5.5.1單體轉化率	43
2.5.5.2乳膠顆粒性質	43
2.5.5.3 起始反應機構的證明	44
2.5.5.4結構分析	45
2.5.5.5 熱分析	46
2.6. 結果與討論	48
2.6.1 不同反應溫度下合成PMMA乳膠顆粒之研究	48
2.6.1.1 反應機制與單體轉化率	48
2.6.1.2 分子鏈結構分析	54
2.6.1.3 乳膠顆粒形態和熱性質	62
2.6.2 不同銅離子濃度合成PMMA乳膠顆粒之研究	66
2.6.2.1 PMMA乳膠顆粒的結構與玻璃轉移溫度	66
2.6.2.2 熱裂解行為	71
2.7 結論	81
2.8 參考文獻	84
第三章 製備光可調控溫度敏感型載體及藥物控制釋放系統	96
3.1 前言	96
3.2溫度敏感型高分子載體	97
3.3 奈米金	100
3.3.1奈米金的製備與穩定性	101
3.3.2奈米金的光熱性質	104
3.4 幾丁聚醣及其在藥物釋放載體的應用	106
3.4.1 幾丁聚醣/三聚磷酸鹽(Chitosan/TPP)	107
3.4.2 自組裝的改質幾丁聚醣奈米顆粒	109
3.4.3 Chitosan-DNA混成膠體系統	109
3.4.4 幾丁聚醣塗佈系統(Chitosan-coated system)	110
3.5 光可調控溫度敏感型載體的研究目的	111
3.6 實驗方法與步驟	113
3.6.1 實驗藥品	113
3.6.2 實驗設備	118
3.6.3 溫度敏感型共聚物	120
3.6.3.1 批次反應合成CS-PN-PEG共聚物	120
3.6.3.2 連續進料系統合成CS-PN-PEG共聚物	122
3.6.3.3 單體轉化率	124
3.6.3.4 結構分析	125
3.6.3.5 CS-PN-PEG共聚物顆粒性質	125
3.6.3.6 CS-PN-PEG共聚物相變化溫度(LCST)的量測	126
3.6.4 奈米金桿	126
3.6.4.1 奈米金桿的製備	126
3.6.4.2 紫外光-可見光光譜分析(UV-VIS spectra)	128
3.6.4.3 穿透式電子顯微鏡分析(TEM)	128
3.6.5 AuR/CS-PN-PEG複合載體的製備	128
3.6.5.1 場放射掃描式電子顯微鏡分析(SEM)	128
3.6.5.2 穿透式電子顯微鏡分析(TEM)	129
3.6.5.3 奈米金桿對激發光源之吸收	129
3.6.6 藥物的包覆與釋放測試	130
3.6.6.1 DS在水中的檢量線	131
3.6.6.2 DS在磷酸鹽緩衝溶液中的檢量線	131
3.6.6.3 CS-PN-PEG共聚物的藥物包覆	131
3.6.6.4 藥物釋放測試	132
3.6.6.5 雷射引導藥物釋放測試	133
3.7 結果與討論	135
3.7.1 幾丁聚醣-聚氮異丙基丙烯醯胺共聚物(CS-PN)的合成及其LCST值	135
3.7.2 批次反應系統合成CS-PN-PEG共聚物及其LCST值	138
3.7.3 連續進料系統合成CS-PN-PEG共聚物及其LCST值	142
3.7.4 單體進料與共聚物組成的關係	150
3.7.5 CS-PN-PEG共聚物的FTIR結構分析	156
3.7.6 CS-PN-PEG的固態13C-NMR光譜分析	162
3.7.7 CS-PN-PEG共聚物的ξ電位	167
3.7.8 CS-PN-PEG共聚物的顆粒大小	168
3.7.9 奈米金桿	178
3.7.9.1 銀離子的影響	178
3.7.9.2 成長溶液中金鹽濃度的影響	184
3.7.9.3 抗壞血酸的影響	187
3.7.9.4 奈米金桿成長動力	189
3.7.9.5 AuR/CS-PN-PEG10複合載體	193
3.7.9.6 CS/AuR/CS-PN-PEG10複合載體	194
3.7.9.7 奈米金桿的光熱效應	196
3.7.10 藥物釋放	197
3.7.10.1 Diclofenac Sodium (DS) 溶於水中的檢量線	197
3.7.10.2 DS溶於磷酸鹽緩衝溶液的檢量線	199
3.7.10.3 CS-PN-PEG載體的藥物包覆與釋放測試	201
3.7.10.4 CS/AuR/CS-PN-PEG10複合載體的藥物包覆與釋放測試	204
3.8 結論	206
第四章 總結與建議	219
4.1 總結	219
4.2 建議	222

圖  目  錄
圖1.1 Cu2+/HSO3-氧化還原起系統起始聚合PMMA乳膠顆粒的研究架構流程圖	3
圖1.2 光可調控溫度敏感性載體的研究架構流程圖	4
圖2.1 乳化聚合反應縮圖	9
圖2.2 類微胞成核機構示意圖	13
圖2.3均相成核機構示意圖	14
圖2.4 自由基聚合終止反應的途徑	22
圖2.5 PMMA-CR=CH2以β scission的方式裂解	23
圖2.7 自由基經鏈轉移的熱裂解機構	25
圖2.8 熱裂解反應可能生的的末端基團	26
圖2.9 PMMA-H的裂解機構	27
圖2.10 head-to head的熱裂解機構	28
圖2.11 籠子效應造成的disproportionation終止反應	29
圖2.12 在O2的環境下PMMA-hh可能發生的熱裂解反應機構(續)	31
圖2.12 在O2的環境下PMMA-hh可能發生的熱裂解反應機構	32
圖2.13 PMMA加入金屬離子在有氧環境下的熱裂解反應機構	33
圖2.14 不同反應溫度合成PMMA乳膠顆粒流程及分析項目圖	41
圖2.15 不同銅離子濃度合成PMMA乳膠顆粒流程及分析項目圖	42
圖2.16 Cu2+/HSO3-起始系統合成PMMA的反應機制	50
圖2.17 硫酸銅水溶液和硫酸銅/亞硫酸氫鈉水溶液在60oC的環境下30分鐘,再經由neocuproine處理程序後的紫外光/可見光光譜圖	51
圖2.18 Cu2+/HSO3-氧化還原起始系統在反應溫度60oC下,合成PMMA乳膠顆粒的單體轉化率(X)和聚合反應速率(Rp)動力曲線圖	53
圖2.19 不同反應溫度下PMMA乳膠顆粒的(a)熱重損失和(b)一階微分熱重損失曲線圖,升溫速率為10oC/min。	55
圖2.20 成長中的PMMA高分子鏈與銅離子產生鏈轉移反應	58
圖2.21 商業用PMMA(PMMA-C)與其以等比例混合硫酸銅的熱重損失曲線圖,升溫速率為10oC/min。	59
圖2.22 BC60乳膠顆粒的1H NMR光譜圖(600 MHz)	60
圖2.23反應溫度60oC下所合成的PMMA乳膠顆粒,在不同倍率下的SEM (a) 20,000倍, (b) 50,000倍, (c) 100,000倍and (d) 200,000倍。尺標為200 nm。	63
圖2.24不同反應溫度下PMMA乳膠顆粒的DSC曲線圖,升溫速率為10oC/min。	65
圖2.25 不同銅離子濃度合成PMMA乳膠顆粒,於反應2小時後的粒徑分佈圖,其中S5C1:[Cu2+] = 2 mM,S5C2:[Cu2+] = 4 mM,S5C3:[Cu2+] = 6 mM。	68
圖2.26 不同銅離子濃度在60oC下合成PMMA乳膠顆粒的SEM圖,其中(a) S5C1 ([Cu2+] = 2 mM),(b) S5C2 ([Cu2+] = 4 mM),(c) S5C3 ([Cu2+] = 6 mM),尺標為 200 nm。	69
圖2.27 不同銅離子濃度在60oC下合成PMMA乳膠顆粒的DSC曲線,其中S5C1: [Cu2+] = 2 mM, S5C2: [Cu2+] = 4 mM, S5C3: [Cu2+] = 6 mM。	70
圖 2.28 商業用PMMA-C和PMMA-KPS的(a)熱重損失和(b)一階微分熱重損失曲線圖,升溫速率10oC/min.	72
圖2.29 不同銅離子濃度合成PMMA乳膠顆粒的(a)熱重損失和(b)一階微分熱重損失曲線圖,升溫速率為10oC/min,其中 S5C1: [Cu2+] = 2 mM,S5C2: [Cu2+] = 4 mM,S5C3: [Cu2+] = 6 mM	75
圖2.30 S5C3在不同升溫速率的熱裂解曲線	79
圖2.31 利用TGA在不同升溫速率下(5、10、15和20oC/min)對S5C3進行熱裂解後所繪製的Ozawa線性圖	80
圖2.32 利用TGA在不同升溫速率下(5、10、15和20oC/min)對S5C3進行熱裂解後所繪製的Boswell線性圖	80
圖3.1溫度敏感型水膠PNIPAAm藥物釋放示意圖	98
圖3.2 高分子穩定奈米金粒子的機制	103
圖3.3交聯的PNIPAAm水膠對奈米金粒子的穩定系統	104
圖3.4 微凝膠顆粒在雷射光源照射下的體積變化率(◇Poly(NIPAAm-co-AAc),◆AuRod/Poly(NIPAAm-co-AAc))	105
圖3.5 雷射導引藥物釋放系統	112
圖3.6 批次反應合成CS-PN-PEG共聚物的流程圖	121
圖3.7 利用蠕動幫浦連續進料PEGMA以合成CS-PN-PEG共聚物的實驗流程及結構分析項目圖	123
圖3.8 奈米金桿光熱能量轉換圖	130
圖3.9 藥物控制釋放裝置圖	133
圖3.10 雷射引導藥物控制釋放裝置圖	134
圖3.11純PN與CS-PN共聚物在不同溫度下的UV450穿透度曲線	137
圖3.11 批次反應系統合成CS-PN-PEG共聚物在不同時間取樣的(a)UV450穿透度曲線及(b)UV450穿透度曲線微分圖	140
圖3.12 連續進料系統合成CS-PN-PEG共聚物,經1%醋酸水溶液釋,在不同溫度下的(a)UV450穿透度曲線及(b)UV450穿透度曲線微分圖。	145
圖3.13 連續進料系統合成CS-PN-PEG共聚物,調整溶液酸鹼值為pH4,在不同溫度下的(a)UV450穿透度曲線及(b)UV450穿透度曲線微分圖。	146
圖3.14 連續進料系統合成CS-PN-PEG共聚物,調整溶液酸鹼值為pH7,在不同溫度下的(a)UV450穿透度曲線及(b)UV450穿透度曲線微分圖。	147
圖3.15 連續進料系統合成CS-PN-PEG共聚物,調整溶液酸鹼值為pH9,在不同溫度下的(a)UV450穿透度曲線及(b)UV450穿透度曲線微分圖。	148
圖3.16 CS-PN-PEG共聚物的PEGMA含量與不同酸鹼環境下的LCST	149
圖3.17 單體進料組成與共聚物組成的模擬關係圖	152
圖3.18 批次反應系統CS-PN-PEG6的單體進料組成與共聚物組成的模擬關係圖	152
圖3.19連續進料系統CS-PN-PEG6的單體進料組成與共聚物組成的關係圖	153
圖3.20 CS-PN-PEG6批次反應系統與連續進料系統的共聚物組成與時間的關係圖	153
圖3.21連續進料系統CS-PN-PEG8的單體進料組成與共聚物組成的關係圖	154
圖3.22連續進料系統CS-PN-PEG16的單體進料組成與共聚物組成的關係圖	154
圖3.23 (a)CS-PN-PEG8和(b)CS-PN-PEG16共聚物組成與反應時間的關係圖	155
圖3.25 (a)純PNIPAAm、(b)純PEGMA、(c)純幾丁聚醣和(d)CS-PN-PEG8共聚物的FTIR光譜圖	159
圖3.26 (a) CS-PN-PEG8、(b) CS-PN-PEG12和(c) CS-PN-PEG16共聚物的FTIR光譜圖	160
圖3.27 純幾丁聚醣13C-NMR光譜圖	163
圖3.28 CS-PN-PEG8的13C-NMR光譜圖	164
圖3.28 CS-PN-PEG12的13C-NMR光譜圖	164
圖3.30 CS-PN-PEG16的13C-NMR光譜圖	165
圖3.31 CS-PN-PEG共聚物顆粒隨pH值變化的ξ電位	167
圖3.32 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的SEM圖(續)	170
圖3.32 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的SEM圖(續)	171
圖3.32 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的SEM圖(續)	172
圖3.32 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的SEM圖(續)	173
圖3.32 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的SEM圖	174
圖3.33 (a) CS-PN-PEG8, (b) CS-PN-PEG10, (c) CS-PN-PEG12, (d) CS-PN-PEG14和(e) CS-PN-PEG16共聚物的TEM圖,尺標為2m  175 
圖3.34CS-PN-PEG共聚物的粒徑分佈圖	176
圖3.35 改變成長溶液中銀離子濃度所形成奈米金桿的UV-Vis光譜圖	183
圖3.36 改變Ag+/Au3+G比例所形成的奈米金桿與SPL, max最大吸收波長和吸收值的關係圖	183
圖3.37 銀低電位沈積在成長中奈米金桿表面的反應機制示意圖	184
圖3.38 改變成長溶液中金離子濃度所形成奈米金桿的UV-Vis光譜圖	185
圖3.39 改變成長溶液中金離子含量所形成的奈米金桿與SPL, max最大吸收波長和吸收值的關係圖	186
圖3.40改變抗壞血酸濃度所形成奈米金桿的UV-Vis光譜圖	188
圖3.41 改變AA/Au3+G比例所形成的奈米金桿與表面電漿共振吸收最大吸收波長和吸收度的關係圖	189
圖3.42 奈米金桿成長過程的UV-Vis光譜圖	190
圖3.43 奈米金桿溶液成長過程的SPL, max最大吸收波長與吸收強度	190
圖3.44 反應18分鐘後,分離奈米金桿與成長溶液所得到奈米金桿的UV-Vis光譜圖	192
圖3.45 反應18分鐘後,分離奈米金桿與成長溶液所得到奈米金桿的TEM圖	192
圖3.46 AuR/CS-PN-PEG10複合載體的(a)SEM圖和(b)TEM圖	193
圖3.47 CS/AuR/CS-PN-PEG10複合載體的(a)SEM圖和(b)TEM圖	195
圖3.48奈米金桿光熱轉換的效應	196
圖3.49 DS在水中不同標準溶液的UV圖	198
圖3.50 DS在水中的檢量線圖	198
圖3.51 DS在磷酸緩衝溶液中不同標準溶液的UV圖	200
圖3.52 DS在磷酸緩衝溶液中的檢量線圖	200
圖3.53CS-PN-PEG6包覆藥物上下層藥物釋放動力曲線	202
圖3.54 CS-PN-PEG6藥物載體在不同時間的藥物累積釋放量	203
圖3.55 CS-PN-PEG6藥物載體在不同時間的藥物累積釋放百分比	203
圖3.56 CS/AuR/CS-PN-PEG10複合藥物載體恆溫37oC(a)照射雷射光和(b)未照射雷射光在不同時間的藥物累積釋放量	205
圖3.57 CS/AuR/CS-PN-PEG10複合藥物載體恆溫37oC(a)照射雷射光和(b)未照射雷射光在不同時間的藥物累積釋放百分比	205

表  目  錄
表2.1 不同反應溫度合成PMMA乳膠顆粒的配方	40
表2.2 不同銅離子濃度合成PMMA乳膠顆粒的配方	42
表2.3反應前後pH值	48
表2.4不同反應溫度合成PMMA乳膠顆粒的轉化率與界面電位
表2.1 不同反應溫度合成PMMA乳膠顆粒的配方	40
表2.2 不同銅離子濃度合成PMMA乳膠顆粒的配方	42
表2.3反應前後pH值	48
表2.4不同反應溫度合成PMMA乳膠顆粒的轉化率與界面電位	52
表2.5 不同反應溫度下合成PMMA乳膠顆粒的最大速率裂解溫度(Td1 和Td2)與溫度600oC時的殘留重量百分比 (R. W.)	56
表2.6 改變銅離子濃度在反應溫度60oC下合成PMMA的最大速率裂解溫度(Td)和裂解程度(degradation extents, DE) (MMA=1.0 M)	56
表2.7 不同反應溫度合成PMMA的立體異構性	61
表2.8 不同反應溫度合成PMMA乳膠顆粒的重量和數目平均分子量	62
表2.9 不同反應溫度合成PMMA乳膠顆粒平均粒徑(Dp)和在水相中的濃度(Np)	63
表2.10 不同銅離子濃度合成PMMA乳膠顆粒的單體轉化率、平均粒徑與界面電位 66
表2.11 不同銅離子濃度合成PMMA乳膠顆粒的熱裂解性質	76
表2.12 不同銅離子起始劑濃度合成PMMA乳膠顆粒的重量平均與數目平均分子量	77
表2.13 不同銅離子濃度合成PMMA乳膠顆粒的熱裂解活化能	81
表3.1 合成CS-PN共聚物的反應系統組成	136
表3.2 批次反應系統合成CS-PN-PEG共聚物的配方	139
表3.3 批次反應系統CS-PN-PEG6在不同時間取樣的轉化率與其LCST值	141
表3.4 連續進料系統合成CS-PN-PEG共聚物的配方	142
表3.5 CS-PN-PEG共聚物的轉化率與不同酸鹼環境下的LCST	149
表3.8 相關FTIR吸收峰之位置表	161
表3.7純幾丁聚醣和CS-PN-PEG共聚物各個碳的化學位移	166
表3.8 CS-PN-PEG共聚物的粒徑	177
表3.9奈米金種晶溶液的配方	179
表3.10改變成長溶液中銀離子的含量以合成奈米金桿的配方	179
表3.13 銀離子濃度與奈米金桿SPL, max最大吸收波長的關係	182
表3.12 成長溶液的金鹽濃度與奈米金桿SPL, max最大吸收波長的關係	185
表3.13改變抗壞血酸濃度與奈米金桿SPL, max最大吸收波長的關係	188
表3.14 DS溶於水中的不同標準溶液	197
表3.15 DS溶於磷酸緩衝溶液中的不同標準溶液	199
表3.16 CS-PN-PEG6包覆藥物DS的釋放測試	202
參考文獻
第二章
1.	P. A. Lovell and M. S. El-aasser, Emulsion polymerization and emulsion polymers, Wiley, New York (1997). 
2.	H. Guo, A. E. Hamielec, S. Zhu, Experimental study of emulsion polymerization with crosslinking, J. Appl. Polym. Sci., 66, 935 (1997).
3.	P. C. Wang, W. Y. Chiu, T. H. Young, Synthesis of Fe3O4/PMMA composite latex particles: Kinetic modeling, J. Appl. Polym. Sci., 100, 4925 (2006).
4.	T. Tanrisever, O. Okay, and C. SonMezoglu, Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate, J. Appl. Polym. Sci., 61, 485(1996).
5.	G. T. D. Shouldice, G. A. Vandezande, and A. Rudin, Practical aspects of the emulsifier-free emulsion polymerization of styrene, Eur. Polym. J., 30, 179 (1994).
6.	F. A. Bovey, I. M. Kolthoff, A. I. Medalia and E. J. Meehan, Emulsion Polymerization, Interscience Publishers, New York, 1965.
7.	D.C. Blackley, Emulsion polymerization-Theory and Practice, Applied science, London, 1975.
8.	J. Ugelstad and F. K. Hansen, Kinetics and Mechanism of Emulsion Polymerization, Rubber Chem. Technol., 49, 536(1976).
9.	V. I. Eliseeva, S. S. Ivanchev, S. I. Kuchanov and A. V. Lebedev, Emulsion Polymerization and Its Applications in Industry, Consultants Bureau, New York and London, 1981.
10.	J. W. Vanderhoff, Mechanism of Emulsion polymerization, J. Polym. Sci., Polym. Symp., 72, 161(1985).
11.	G. W. Poehlein and F. J. Schork, Emulsion Polymers/Emulsion Polymerization, Polym. News, 13, 231(1988).
12.	J. Barton and I. Capek, Radical Polymerization in Disperse Systems, Ellis Horwood, New York, 1944.
13.	Q. Wang, S. Fu and T. Yu, Emulsion polymerization, Prog. Polym. Sci., 19, 703(1994).
14.	R. G. Gilbert, Emulsion Polymerization. A Mechanistic Approach, Academic Press, London, 1995.
15.	R. M. Fitch, Polymer Colloids: A Comprehensive Introduction, Academic Press, New York, 1997.
16.	W. D. Harkins, A general theory of the reaction loci in emulsion polymerization, J. Chem. Phys., 13, 381(1945). 
17.	W. D. Harkins, A general theory of the reaction loci in emulsion polymerization. II, J. Chem. Phys., 14, 47(1946).
18.	W. D. Harkins, A general theory of the mechanism of emulsion polymerization, J. Am. Chem. Soc., 69, 1428(1947).
19.	W. D. Harkins, General theory of emulsion polymerization, J. Polym. Sci., 5, 217(1950).
20.	W. V. Smith, The kinetics of styrene emulsion polymerization, J. Am. Chem. Soc., 70, 3695(1948).
21.	W. V. Smith and R. W. Ewart, Kinetics of emulsion polymerization, J. Chem. Phys., 16, 592(1948).
22.	B. Jacobi, Zur kolloidchemie der emulsionspolymerisation, Angew. Chem., 64, 539(1952).
23.	W. J. Priest, Particle growth in the aqueous polymerization of vinyl acetate, J. Phys. Chem., 56, 1077(1952).
24.	R. M. Fitch and C. H. Tsai, in “Polym. Colloids”, R. M. Fitch ed., Plenum, New York, 73(1971).
25.	R. M. Fitch and L. B. Shih, Emulsion polymerization: Kinetics of radical capture by the particles, Prog. Colloid Polym. Sci., 56, 1(1975).
26.	C. P. Roe, Surface chemistry aspects of emulsion polymerizatio, Ind. Eng. Chem., 60, 20(1968).
27.	P. J. Feeny, D. H. Napper and R. G. Gilbert, Coagulative nucleation and particle size distributions in emulsion polymerization, Macromoecules, 17, 2520(1984).
28.	P. J. Feeny, R. G. Gilbert and D. H. Napper, J. Colloid Interface Sci., 107, 159(1985).
29.	B. C. Y. Whang, M. J. Ballard, R. G. Gilbert and D. H. Napper, Molecular weight distributions in emulsion polymerizations: evidence for coagulative nucleation, Aust. J. Chem., 44, 1133(1991).
30.	J. Ugelstad, M. S. El-Aasser and J. W. Vanderhoff, The acid decomposition of methylol melamines and methoxymethyl melamines, J. Polym. Sci., Polym. Lett. Ed., 11, 503(1937).
31.	J. Ugelstad, F. K. Hansen and S. Lange, Emulsion polymeriazation of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monmer droplets, Dielektr. Makromol. Chem., 175, 507(1974).
32.	D. P. Durbin, M. S. El-Aasser, G. W. Poehlein and J. W. Vanderhoff, Influence of monomer preemulsification on formation of particles from monomer drops in emulsion polymerization, J. Appl. Polym. Sci., 24, 703(1979)
33.	G. J. Chamberlain, D. H. Napper and R. G. Gilbert, Polymerization in emulsion droplets, J. Chem. Soc., Faraday Trans.1, 78, 591(1982).
34.	I. Capek and C. S. Chern, Radical polymerization in direct mini-emulsion systems, Adv. Polym. Sci., 155, 101(2001).
35.	F. K. Hansen and J. Ugelstad, Particle nucleation in emulsion polymerization. I. A theory for homogenous nucleation, J. Polym. Sci., Polym. Chem. Ed., 16, 1953(1978).
36.	F. K. Hansen and J. Ugelstad, Particle nucleation in emulsion polymerization. II. Nucleation in emulsifierfree systems investigated by seed polymerization, J. Polym. Sci. Polym. Chem. Ed., 17, 3033(1979).
37.	F. K. Hansen and J. Ugelstad, Particle nucleation in emulsion polymerization. III. Investigation of nucleation in systems with anionic emulsifier by seeded and unseeded polymerization, J. Polym. Sci. Polym. Chem. Ed., 17, 3047(1979).
38.	S. A. Chen and S. T. Lee, Kinetics and mechanism of emulsifier-free emulsion polymerization: styrene/hydrophilic comonomer (acrylamide) system, Macromolecules, 24, 3340 (1991).
39.	S. A. Chen and S. T. Lee, Limiting Conversion for Systems of Emulsifier-Free. Emulsion Polymerization of Styrene, Macromolecules, 25, 1530 (1992).
40.	Van der Hoff, B.M.E. “advances in chemistry series”, No.34, Amer. Chem. Soc., Washington D. C., 6(1967).
41.	A. R. Goodall, M. C. Wilkinson and M. C. Hearn, Mechanism of emulsion polymerization of styrene in soap-free systems, J. Polym. Sci., Polym. Chem. Ed., 15, 2193(1977).
42.	R. A. Cox, M. C. Wilkinson, A. R. Goodall and J. M. Creasey, Study of the anomalous particles formed during the surfactant-free emulsion polymerization of styrene, J. Polym. Sci., Polym. Chem. Ed., 15, 2311(1977).
43.	C. Y. Chen and I. Piirma, Emulsion polymerization of acenaphthylene. I. A study of particle nucleation in water phase and in aqueous emulsions, J. Polym. Sci., Polym. Chem. Ed., 18, 1979(1980).
44.	J. W. Vanderhoff, Mechanism of emulsion polymerization, J. Polym. Sci., Polym. Symp., 72, 161(1985).
45.	J. W. Goodwin, R. H. Ottewill and R. Pelton, Studies on the preparation and characterization of monodisperse polystyrene latices V.: The preparation of cationic lattices, Colloid Polym. Sci., 257, 61(1979). 
46.	K. Esumi, Polymer interfaces and emulsion, Marcel Dekker, New York, 1999.
47.	R. M. Fitch, The homogenous nucleation of polymer colloid, Br. Polym. J., 5, 467(1973).
48.	F. K. Hansen and J. Ugelstad, Kinetics and mechanism of emulsion polymerization, Rubber Chem. Techno., 49, 536(1976).
49.	丁志帆,螫合性高分子乳液之合成及應用,國立成功大學化學工程研究所碩士論文,2004。
50.	V. I. Yeliseyeva, “Emulsion Polymerization (Ed. I. Piirma)”, Chap. 7, Academic Press, 1982.
51.	P. K. Sahoo and R. Mohapatra, Synthesis and kinetic studies of PMMA nanoparticles by non-conventionally initiated emulsion polymerization, Eur. Polym. J., 39, 1839(2003).
52.	J. Lu, Z. Zhang, X. Xia and X. Zhu, Complex of cross-linked polyvinylamine with Cu(II) as catalyst for vinyl polymerization, Appl. Catal. A, 247, 163(2003).
53.	A. B. Moustafa, M. A. Abd El-ghaffar and A. S. Badran, Aqueous polymerization of methyl methacrylate catalyzed by copper metal and some of its compounds, J. Polym. Sci., Polym. Chem. Ed., 19, 719(1981). 
54.	E. M. Sadek, M. A. Mekewi, F. Z. Yehia, S. M. Solyman and S. A. Hassan, Catalytic polymerization of methyl methacrylate in different media using supported metal phthalocyanines, 1: Bulk polymerization in relation to the microcrystalline structure of supported metal phthalocyanines, Macromol Chem Phys, 202, 1505(2001).
55.	C. X. Yang, L. K. Lin and J. Y. Wu, Studies on the pol ymer izaton of methyl methacrylate initiated by "arbutus" curric polycarboxylate/sod ium sulfite system, Acta Polym Sinica, 1, 12(1989).
56.	K. Smolders, J. Baeyens, Thermal degradation of PMMA in fluidised beds, Waste Manage., 24, 849-857(2004).
57.	M. E. Enyiegbulam, Industrial recovery of poly(methyl methacrylate) topcoat, Acta Polym., 39(11), 657 (1988).
58.	W. Kaminsky and C. Eger, Pyrolysis of filled PMMA for monomer recovery, J. Anal. Appl. Pyrolysis, 58, 781 (2001). 
59.	T. Kashiwgi, A. Inba, J. E. Brown, K. Hatada, T. Kitayama and E. Masuda, Effect of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates), Macromolecules, 19, 2160(1986).
60.	J. D. Peterson, S. Vyazovkin, C. A. Wight, Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate), J. Phys. Chem. B, 103, 8087(1999).
61.	G. X. Xi, S. L. Song and Q. Liu, Catalytic effects of sulfates on thermal degradation of waste poly(methyl methacrylate), Thermochim. Acta, 435, 64(2005).
62.	席國喜,宋世理,劉琴,金屬氧化物催化熱降解廢聚甲基丙烯酸甲酯的動力學研究,石油化工,34(3), 250(2005).
63.	W. Michaeli and K. Breyer, Feedstock recycling of polymethyl methacrylate (PMMA), Kunststoffe Plast Eur., 87, 183(1997).
64.	W. Kaminsky, M. Predel and A. Sadiki, Feedstock Recycling of Polymers by Pyrolysis in a Fluidised Bed, Polym. Degrad. Stab., 85, 1045(2001).
65.	N. Grassie and E. Vance, Degradation evidence for the nature of chain termination and transfer with benzene in the polymerization of methyl methacrylate, Tran. Faraday Soc., 49, 184(1953).
66.	N. Grassie and H. W. Melville, The thermal degradation of polyvinyl compounds. IV. The thermal degradation of the methyl methacrylate copolymers with glycol dimethacrylate and acrylonitrile, Proc. R. Soc. London, A, 14, 199(1949).
67.	P. Cacioli, G. Moad, E. Rizzardo, A. K. Serelis and D. H. Solomon, The use of model compounds in interpreting the thermal degradation of poly(methyl methacraylate), Polym. Bull., 11, 325(1984).
68.	E. Giannetti and R. Mazzocchi, High conversion free-radical suspension polymerization: End groups in poly(methyl methacrylate) and their influence on the thermal stability, J. Polym. Sci. Part A, Polym. Chem., 24, 2517(1986).
69.	L. E. Manring, Thermal degradation of poly(methyl methacrylate). 2. vinyl-terminated polymer, Macromolecules, 22, 2673(1989).
70.	L. E. Manring,Thermal degradation of saturated poly(methyl methacrylate), Macromolecules, 21, 528(1988).
71.	Meisters, G. Moad, E. Rizzardo and D. H. Solomon, Thermal stability of poly(methyl methacrylate), Polym. Bull., 20, 499(1988).
72.	K. Hatada, T. Kitayama and E. Masuda, Studies on the radical polymerization of methyl methacrylate in bulk and in benzene using totally deuterated monmer technique, Polym. J., 18, 395(1986).
73.	L. E. Manring, Thermal degradation of poly(methyl methacrylate). 3. polymer with head-to-head linkages, Macromolecules, 22, 4652(1989).
74.	J. Fries and H. Getrost, Organic Reagents for Trace Analysis; E. Merck: Darmstradt, 133(1977). 
75.	T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38, 1881(1965).
76.	P. G. Boswell, On the calculation of activation-energies using a modified Kissinger method, J. Thermal. Anal., 18, 353(1980).
77.	P. C. Mork and J. Ugelstad, On the persulphate-bisulphite-Cu2+ initiated emulsion polymerization of vinyl chloride, Die Makromolekulare Chemie, 128, 83(1969).
78.	F. Rasti and G. Scott, Mechanism of antioxidant action: The role of copper salts in the photostabilization of paint media, Eur. Polym. J., 16, 1153(1980).
79.	J. A. Chandrasiri, D. E. Roberts and C. A. Wilkie, The effect of some transition metal chlorides on the thermal degradation of poly(methyl methacrylate): a study using TGA-FTIR spectrometry, Polym. Degrad. Stab., 45, 97(1994).
80.	R. N. Ibbett, NMR Spectroscopy of Polymers; Blackie Academic & Professional: London, 1993.
81.	D. Campbell and J. R. White, Polymer Characterization; Chapman & Hall: London, 1989.
82.	B. J. Hunt and M. I. James, Polymer Characterization; Blackie Academic & Professional: London, 1993.
83.	I. C. McNeil, A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis, Eur. Polym. J., 4, 21(1968).
84.	D. H. Grant, S. Bywater, Thermal depolymerization of poly-methylmethacrylate in diphenylether solution, Trans. Faraday. Soc., 59, 2105(1963).
85.	J. R. MacCallum, The thermal degradation of poly(methyl methacrylate), Makromolek. Chem., 83, 137(1965).
86.	Y. H. Hu, C. Y. Chen, The effect of end groups on the thermal degradation of poly(methyl methacrylate), Polym. Degrad. Stab., 82, 81(2003).

第三章
1.	岑翰儒,幾丁聚醣接枝聚氮-異丙基烯醯胺薄膜的合成及其性質的研究,淡江大學碩士論文,2004。
2.	H. Feil, Y. H. Bae, J. Feijen and S. W. Kim, Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers, Macromolecules, 26, 2496(1993).
3.	X. Ma, J. Xi, X. Zhao, X. Tang, Deswelling comparison of temperature-sensitive poly(N-isopropylacrylamide) microgels containing functional -OH groups with different hydrophilic long side chains, J. Polym. Sci., Part B: Polym. Phys., 43, 3575(2005)
4.	葉紹任,林才祐,謝明發,隱藏性奈米高分子微胞的藥物輸送應用,化工資訊與商情,第60頁,2005年8月。
5.	S. R. Sershen, S. L. Westcott, N. J. Halas and J. L. West, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res., 51, 293(2000).
6.	S. R. Sershen, S. L. Westcott, J. L. West and N. J. Halas, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,  Appl. Phys. B, 73, 379 (2001).
7.	葉晨聖,生物奈米技術,成大化學系,2007。
8.	L. Tang, L. Liu and H. B. Elwing, Complement activation and inflammation triggered by model biomaterial surfaces, J. Biomed. Mater. Res., 41, 333(1998).
9.	S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, Nanoengineering of optical resonances, Chem. Phys. Lett., 288, 243(1998).
10.	K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668(2003).
11.	王崇人,神奇的奈米科學,科學發展,354期,第48頁,2002年六月。
12.	N. R. Jana, L. Gearheart and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 13, 1389(2001).
13.	T. K. Sau and C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, 20, 6414(2004).
14.	周更生,黃楷熒,奈米金屬微粒之製程介紹, 化工技術第11卷第10期,第132頁,2003年10月號。
15.	郭清癸,黃俊傑,牟中原,金屬奈米粒子的製造,物理雙月刊23卷6期,第614頁,2001年12月號。
16.	L. Gou and C. J. Murphy, Fine-Tuning the Shape of Gold Nanorods, Chem. Mater., 17, 3668(2005).
17.	M. Q. Zhu, L. Q. Wang, G. J. Exarhos and A. D. Q. Li, Thermosensitive Gold Nanoparticles, J. Am. Soc. Chem., 126, 2656(2004). 
18.	C. Mangeney, F. Ferrage, I. Aujard, V Marchi-Artzner, L. Jullien, O. Ouari, E. D. Rekaı, A Laschewsky, I. Vikholm,.and J. W. Sadowski, Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers, J. Am. Soc. Chem., 124, 5811(2002). 
19.	M. B. Mohamed, T. S. Ahmadi, S. Link, M Braun and M. A. El-Sayed, Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix, Chem. Phys. Lett., 343, 55(2001).
20.	L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, j. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U.S.A., 100, 13549(2003).
21.	N. Shah, A. Cerussi, C. Eker, J. Espionza, J. Butler, J. Fishkin, R. Hornung and B. Tromberg, Noninvasive Functional Optical Spectroscopy of Human Breast Tissue, Proc. Nat. Acad. Sci. U.S.A., 98, 4420(2001).
22.	I. Gorelikov, L. M. Field and E. Kumacheva, Hybrid microgels photoresponsive in the near-infrared spectral range, J. Am. Chem. Soc., 126, 15938(2004).
23.	C. M. Lehr, J. A. Bowstra, E. H. Schacht, H. E. Junginger, In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, Int. J. Pharm., 78, 43(1992).
24.	P. Artursson, T. Lindmark, S.S. Davis, L. Illum, Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2), Pharm. Res. 11 1358(1994).
25.	G. Borchard, H.L. Lueben, G.A. De Boer, J. Coos Verhoef, C.M. Lehr, H.E. Junginger, The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption III: Effects of chitosan glutamate and carbomer on epithelial tight junctions in vitro, J. Control. Rel., 39, 131(1996).
26.	N. G. M. Schipper, K.M. Varum, P. Artursson, Chitosan as absorption enhancers for pooly absorbable drugs. 1: Influence of molecular weight and degree of deacetylation on drug transport across human epithelial (Caco-2) cells, Pharm. Res., 13, 1686(1996).
27.	N. G. M. Schipper, S. Olsson, A. J. Hoostraate, A. G. De Boer, K. M. Varum, P. Artursson, Chitosan as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement, Pharm. Res., 14, 923(1997).
28.	N. G. M. Schipper, K.M. Varum, P. Stenberg, G. Ockind, H. Lennernais, P. Artursson, Chitosan as absorption enhances for poorly absorbable drugs 3: influence of mucus on absorption enhancement, Eur. J. Pharm. Sci., 8, 335(1999).
29.	R. Bodmeier, H. Chen, O. Paeratakul, A novel approach to the oral delivery of micro- or nanoparticles, Pharm. Res., 6, 413(1989).
30.	K. A. Janes, P. Calvo, M. J. Alonso, Polysaccharide colloidal particles as delivery systems for macromolecules, Adv. Drug Delivery Rev., 47, 83(2001).
31.	P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, M. J. Alonso, Chitosan and chitosan: ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for protein and vaccines, J. Appl. Polym. Sci., 63, 125(1997).
32.	K. Yao, T. Peng, M. Xu, C. Yuan, pH-Dependent hydrolysis and drug release of chitosan/polyether interpenetrating polymer network hydrogel, Polym. Int., 34, 213(1994).
33.	Y. Ohya, R. Cai, H. Nishizawa, K. Hara and T. Ouchi, Preparation of PEG-grafted chitosan nano-particle for peptide drug carrier, Proc. Intl. Symp. Control. Rel. Bioact. Mater., 26, 655(1999).
34.	I. F. Uchegbu, A. G. Schatzlein, L. Tetley, A. I. Gray, J. Sludden, S. Siddique, E. Mosha, Polymeric chitosan-based vesicles for drug delivery, J. Pharm. Pharmacol., 50, 453(1998).
35.	K. Roy, W. Chu, J. McGrath, S. C. Kuo, S. K. Huang, K. W. Leong, Nanoparticle mediated oral gene delivery for DNA vaccination, Proc. Intl. Symp. Control. Rel. Bioact. Mater., 26, 161(1999).
36.	K. A. Mislick, J. D. Baldeschwieler, Evidence for the role of proteoglycans in cation-mediated gene transfer, Proc. Natl. Acad. Sci. USA, 93, 12349 (1996).
37.	R. J. Mumper, J. Wang, J. M. Claspell, A. P. Rolland, Novel polymeric condensing carriers for gene delivery, Proc. Intl. Symp. Control. Rel. Bioact. Mater., 22, 178(1995).
38.	H. Q. Mao, K. Roy, S. M. Walsh, J. T. August, K. W. Leong, DNA–chitosan nanospheres for gene delivery, Proc. Int. Symp. Control. Rel. Bioact. Mater., 23, 401(1996).
39.	I. Henriksen, G. Smistad, J. Karlsen, Interactions between liposomes and chitosan, Int. J. Pharm., 101, 227(1994)
40.	P. Calvo, C. Remunan, J. L. Vila-Jato, M. J. Alonso, Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsion, Colloid. Polym. Sci., 275, 46(1997).
41.	T. M. Don, S. C. Hsu, W. Y. Chiu, Structures and thermal properties of chitosan-modified poly(methyl methacrylate), J. Polym. Sci. Polym. Chem. Ed., 39, 1646(2001).
42.	S. C. Hsu, T. M. Don, W. Y. Chiu, Free radical degradation of chitosan with potassium persulfate, Polym. Degrad. Stab., 75, 73(2002).
43.	S. C. Hsu, T. M. Don, W. Y. Chiu, Synthesis of chitosan-modified poly(methyl methacrylate) by emulsion polymerization, J. Appl. Polym. Sci., 86, 3047(2002).
44.	C. F. Lee, C J. Wen, C L. Lin, W. Y. Chiu, Morphology and temperature responsiveness swelling relationship of poly(N-isopropylamide-chitosan) copolymers and their application to drug release, J. Polym. Sci. Polym. Chem. Ed., 42, 3029(2004).
45.	S. Gramm, D. Schmaljohann, H. Komber, B. Voit, Copolymerization Kinetics of N-Isopropylacrylamide with Poly(ethylene glycol) Monomethacrylate Monomethylether Determinated via On-Line NMR Spectroscopy, J. Polym. Sci., Part A: Polym. Chem., 43, 142 (2005).
46.	Y. X. Xu, K. M. Kim, M. A. Hanna, Nag D. Chitosan-starch composite film: preparation and characterization, Ind. Crops Prod., 21, 85(2005).
47.	E. Guibal, C. Milot, O. Eterradossi, C. Gauffier, A. Domard, Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses, Int. J. Biol. Macromol., 24, 49(1999).
48.	A. Sionkowska, M. Wisniewski, J. Skopinska, C. J. Kennedy, T. J. Wess, Molecular interactions in collagen and chitosan blends. Biomaterials, 25, 795(2004).
49.	H. Y. Kweon, I. C. Um, Y. H. Park, Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polym., 42, 6651(2001).
50.	W. Liu, S. Sun, Z. Cao, X. Zhang, K. Yao, W. W. Lu, K. D. K. Luk, An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes, Biomaterials, 26, 2705(2005).
51.	G. Socrates, Infrared and Raman Characteristic Group Frequencies. New York:John Wiley&Sons, LTD. Third Edition 2001.
52.	S. Eustis and M. A. El-Sayed, Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum, J. Appl. Phys., 100, 044324 (2006).
53.	M. Liu and P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids, J. Phys. Chem. B, 109, 22192(2005).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信