§ 瀏覽學位論文書目資料
系統識別號 U0002-2707200716204000
DOI 10.6846/TKU.2007.01219
論文名稱(中文) 聚二甲基矽氧烷之震盪式熱管研製
論文名稱(英文) Fabrication of Polydimethylsiloxane Pulsating Heat Pipe
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 吳宗祐
研究生(英文) Tsung-Yu Wu
學號 694340133
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-06
論文頁數 81頁
口試委員 指導教授 - 康尚文(swkang@mail.tku.edu.tw)
委員 - 陳志臣
委員 - 楊龍杰
委員 - 顏政雄
委員 - 陳育堂
關鍵字(中) 聚二甲基矽氧甲烷
震盪式熱管
翻模
充填率
關鍵字(英) PDMS
Pulsating Heat Pipes
Turn Over the Mold
Filled Ratio
第三語言關鍵字
學科別分類
中文摘要
本論文是利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)為其管路材質,製作出長、寬及流道內徑各為56mm、50mm以及2mm的可視化之震盪式熱管(Pulsating Heat Pipe, PHP),其中包含熱管製程、真空處理、充填、封裝等,嘗試設計一可依循的製程與原型製作。將測試平台架構完成,並利用甲醇及乙醇為工作流體,在固定充填率(約60%)、不同輸入功率下(3W、4W、5W、6W、7W、8W)測試其效能。並且利用高速攝影機,拍攝流道內工作流體作動之情形,加以分析討論。
其實驗結果,以甲醇為工作流體,垂直擺放時,可得最佳效能。在輸入功率3W時,其熱阻值比乙醇為工作流體時少了4.5°C/W。而在輸入功率為4W時,其蒸發端平均溫度低了15°C。從實驗結果也得知,重力對PHP性能的影響,PHP在垂直擺放下比水平擺放時,更容易啟動。
在可視化方面,利用高速攝影機來觀察PHP流道內複雜的汽-液柱作動情形,以便得知實際流場之行為模式。可清楚觀察到,PHP隨著不同的輸入功率,工作流體之作動情形及流場型態也隨之改變。從細泡流場轉變為彈狀型流場再變為連續彈狀型流場;並且可清楚觀察到,汽泡在蒸發端成核之情況、汽泡與汽泡之結合及分裂與汽泡之崩潰、消失等。而當PHP在輸入較高之熱通量時,汽-液柱會開始朝一固定方向在流道內作大幅度之循環。
英文摘要
This paper reports on preliminary experimental results by using polydimethylsiloxane (PDMS) to manufacture a visual pulsating heat pipe with length, width and internal diameter are 56mm, 50mm and 2mm respectively. That includes manufacturing process and the vacuuming management for filling and packaging. Try to design a standard process to manufacture the prototype and to complete the test platform structure. Make use of the methanol and ethanol to be the working fluid. According to the fix filled ratio (about 60%) and different heating power (3W, 4W, 5W, 6W, 7W, 8W respectively) to test the thermal performance. By utilizing the high speed video camera, shoot working situation of the working fluid inside the channel will be discussed and analyzed.
The experimental shows that when the working fluid is methanol and placed it in vertical orientation could have shown the best efficiency result. When the heating power is 3W, the thermal resistance is less to 4.5ºC/W than the ethanol working fluid. When the heating power is 4W, the average temperature will decrease to 15ºC of the evaporator. In the mean time, the gravity will have the impact on PHP performance, therefore the vertical orientation is easier to work as compared to the horizontal orientation.
According to the visual observation, utilize the high speed video camera; observe that working situation of the complex vapor plug and liquid slug inside the channel to study the behavior of flows. It is clear to observe the different heating power of the pulsating heat pipe which changes the working situation and flow type of the working fluid. We can find out that change from minute bubble flow into slug bubble flow and change into continuous slug bubble flow, nucleation of bubble in the evaporator, bubble combination, break, collapsed and vanishes. When PHP is inputting higher heat flux, vapor plug and liquid slug will begin in a regular direction inside the channel to make it circulate with high oscillation amplitude.
第三語言摘要
論文目次
中文摘要..................................................I
英文摘要.................................................II
目錄.....................................................IV
圖目錄...................................................VI
表目錄...................................................IX
符號明...................................................IX
第一章 緒論..............................................1
1-1 研究動機.............................................1
1-2 文獻回顧.............................................3
1-3 研究目的.............................................9
第二章 震盪式熱管介紹...................................11
2-1 震盪式熱管裝置特性及工作原理........................11
2-2 震盪式熱管基本構造及樣式............................14
2-3 震盪式熱管設計參數及操作參數........................15
2-3-1管徑設計...........................................15
2-3-2 工作流體充填率....................................17
2-3-3 工作流體的選擇....................................19
2-3-4 傾斜角度放置及重力影響............................20
2-4 管內兩相流型態......................................21
2-5 震盪式熱管與傳統熱管優缺點比較......................24
第三章 震盪式熱管之設計與製作...........................25
3-1 PHP設計.............................................27
3-2 PHP 製作............................................29
3-2-1 母模製作..........................................29
3-2-2 PDMS基本特性	......................................30
3-2-3 PDMS之PHP製作.....................................31
3-2-4 PHP之封裝與結合...................................32
3-3 PHP抽氣及工作流體充填...............................36
3-3-1 真空度測試........................................36
第四章 實驗架設及測試...................................38
4-1 抽氣充填............................................38
4-2 實驗架設............................................41
4-2-1熱電偶線位置.......................................43
4-2-2熱電偶線溫度校正...................................44
4-3 性能測試............................................46
4-4 PHP實驗觀察.........................................48
第五章 實驗分析與結果討論...............................49
5-1 實驗分析............................................49
5-1-1 相同工作流體與不同角度之放置......................49
5-1-2 不同工作流體與相同角度之放置......................54
5-1-3 綜合討論..........................................54
5-2 PHP可視化之探討.....................................58
5-2-1 甲醇及乙醇垂直放置之作動情況......................58
5-2-2 流道內汽-液柱作動行為	.............................65
5-2-3 蒸發端及冷凝端汽-液柱型態.........................68
5-2-4 汽柱之結合........................................69
5-2-5 PHP流道內之流場型態...............................70
第六章 結論與未來建議...................................73
6-1 結論................................................73
6-2 未來建議............................................74
參考文獻................................................75
附錄....................................................79
圖1.1 PHP示意圖..........................................2
圖1.2 多種加裝流向控制閥之PHP示意圖	.................... 6
圖1.3 無流向控制閥之PHP示意圖............................6
圖1.4 PHP可視化圖 (a)Sandwitch set-up (b)Vacuum box set-up (c)Glass tube set-up.....................................6
圖1.5 管內汽泡作動示意圖.................................7
圖1.6 乙醇之填充率與熱性能示意圖.........................7
圖1.7 不同管徑及工作流體對性能影響之示意圖................7
圖1.8 PHP之水與鑽石奈米流體溫差比較圖....................8
圖1.9 奈米流體沉積現象示意圖 (a)0分鐘(b)1分鐘(c)2分鐘(d)3分鐘(e)4分鐘(f)5分鐘(g)6分鐘...............................8
圖1.10 熱阻值與不同加熱瓦數及操作溫度之關係圖............8
圖1.11 PHP於三種不同擺放角度之熱性能 (ID/OD=2mm/3mm;FR=50%)..................................................9
圖1.12 PHP於三種不同擺放角度之熱性能 (ID/OD=1mm/2mm;FR=50%)..................................................9
圖2.1 震盪式熱管之壓-焓圖...............................13
圖2.2 典型震盪式熱管示意圖..............................13
圖2.3 震盪式熱管作動原理圖..............................14
圖2.4 三種類型之PHP種類 (a)閉迴路式PHP (b)流向控制閥式閉迴路PHP (c)開迴路式PHP...................................15
圖2.5 圓柱形汽泡於不同管徑下之型態......................17
圖2.6 管內徑影響管內流的分佈型..........................17
圖2.7 水為工作流體之填充比率對震盪式熱管熱傳性質的影響..19
圖2.8 填充比率對震盪式熱管熱傳性質的影響................19
圖2.9 PHP之汽泡型態圖...................................23
圖2.10 PHP管內流熱阻與熱流密度對應圖	...................23
圖3.1 銅管製震盪式熱管..................................26
圖3.2 玻璃管與U型管製之半可視化震盪式熱管...............26
圖3.3 PDMS製之震盪式熱管................................26
圖3.4 PDMS製作及實驗架設測試.............................27
圖3.5 PHP示意圖.........................................29
圖3.6 PHP鋁模圖 (a) Solidwork 模型圖 (b)實體原型圖......29
圖3.7 PDMS之PHP完成圖 (a) 澆注完成 (b) 硬化完成.........31
圖3.8 脫模後之PHP模型...................................32
圖3.9 材料化學鍵結構圖..................................34
圖3.10 PDMS經氧氣電漿處理後之表面反應...................34
圖3.11 PHP完成圖(PDMS與玻璃接合)........................35
圖3.12 PHP完成圖(PDMS與PDMS結合)........................35
圖3.13 抽氣連結圖........................................37
圖3.14 測漏圖............................................37
圖4.1 法國製Alcatel真空幫浦..............................39
圖4.2 Granville Phillips真空計...........................39
圖4.3 真空抽氣系統示意圖.................................40
圖4.4 工作流體脫氣處理...................................40
圖4.5 熱管腔體內部真空處理...............................40
圖4.6 充填後封口完成.....................................41
圖4.7 電源供應器.........................................42
圖4.8 數據擷取器.........................................42
圖4.9 水冷系統...........................................43
圖4.10 高速運動影像擷取系統..............................43
圖4.11 熱電偶線位置及實驗架構圖..........................44
圖4.12 溫度校正設備圖....................................45
圖4.13 PHP垂直放置流道內汽-液柱分佈圖....................48
圖5.1 甲醇-垂直放置之蒸發端與冷凝端之時間與溫度變化示意圖51
圖5.2 甲醇-水平放置之燒乾現象............................52
圖5.3 甲醇垂直及水平放置之蒸發端溫度.....................52
圖5.4 甲醇垂直及水平放置之熱阻值.........................52
圖5.5 乙醇-垂直放置之蒸發端與冷凝端之時間與溫度變化示意圖53
圖5.6 乙醇-垂直及水平放置之蒸發端溫度....................53
圖5.7 乙醇-垂直及水平放置之熱阻值........................53
圖5.8 甲醇及乙醇-垂直放置之蒸發端平均溫度................56
圖5.9 甲醇及乙醇-垂直放置之熱阻值........................56
圖5.10 甲醇及乙醇-水平放置之蒸發端平均溫度...............56
圖5.11 甲醇及乙醇-水平放置之熱阻值.......................57
圖5.12 甲醇及乙醇-垂直及水平擺放之不同輸入功率對蒸發端平均溫度變化圖...............................................57
圖5.13 甲醇及乙醇-垂直及水平擺放之不同輸入功率對熱阻變化圖.......................................................57
圖5.14 甲醇-垂直擺放下輸入功率4W之作動情況...............60
圖5.15 甲醇-垂直擺放下輸入功率7W之作動情況...............61
圖5.15 甲醇-垂直擺放下輸入功率7W之作動情況(續)...........62
圖5.16 乙醇-垂直擺放下輸入功率6W之作動情況...............63
圖5.16 乙醇-垂直擺放下輸入功率6W之作動情況(續)...........64
圖5.17 PHP流道內其作動行為圖.............................66
圖5.18 汽-液柱流向指示圖.................................67
圖5.19 U形管內之流場型態圖 (a) 蒸發端U形管之流場 (b) 冷凝端U形管之流場.............................................68
圖5.20 汽柱結合示意圖 (a) t=0s (b) t=0.003s (c) t=0.077s.69
圖5.21 細泡流場型態 (a) t=0s (b) t=0.018s (c) t=0.043s...71
圖5.22 彈狀流場型態......................................71
圖5.23 連續彈狀流場型態 (a) t=0s (b) t=0.004s (c) t=0.276s (d) t=0.280s.............................................72

表目錄
表3-1 不同工作流體所對應的管路內徑範圍...................28
表4-1 高速攝影機之規格...................................42
表4-2 實驗參數設計	.......................................46
表5-1 工作流體性質表....................................55
參考文獻
[1]	 H. Akachi, US Patent 4921041 (1990).
[2]	 H. Akachi, US Patent 5490558 (1993).
[3]	 H. Akachi, US Patent 5219020 (1996).
[4]	 S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll,                                                                                                                                “Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe,”  Proc. 6th International Heat Pipe Symposium, pp. 235-247 (2000).
[5]	B. Y. Tong, K. Ooi and T. N. Wong, “Closed-Loop Pulsating Heat Pipe,” Applied Thermal Engineering, Vol. 21/18, pp. 1845-1862 (2001).
[6]	W. Qu and T. Ma, “Experimental Investigation on Flow and Heat Transfer of a Pulsating Heat Pipe,” Journal of Engineering Thermophysics,	Vol. 23, No. 5, pp.596-598(2002).
[7]	S. Khandekar, M. Groll, P. Charoensawan and P. Terdtoon, “Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon,” the 12th International Heat Transfer Conference (2002).
[8]	P. Charoensawan, S. Khandekar, M. Groll and P.  Terdtoon, “Closed Loop Pulsating Heat Pipes Part A: Parametric Experimental Investigations,” Applied Thermal Engineering, Vol. 23, pp. 2009-2020 (2003).
[9]	H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, and Q. Yu, S. U. S. Choi and M. Tirumala, “Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe,” Applied Physics Letters, Vol. 88, pp. 143116-1~3 (2006).
[10]	H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S.Choi and M. Tirumala, “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe,” Journal of Heat Transfer, Vol.128, pp. 123-126 (2006).
[11]	 陳慧倫,「銀奈米流體應用於震盪式熱管效能之研究」,碩士論          文,淡江大學機械工程研究所,民國九十五年。
[12]	游博淮,「氧化銅奈米流體、水、甲醇應用於閉迴路型脈衝式熱管之研究」,碩士論文, 台北科技大學冷凍空調工程學系,民國九十五年。
[13]	Y. Honghai, M. Groll, S. Khandekar, “Operation Limit of Closed Loop                                                 Pulsating Heat Pipes,” Applied Thermal Engineering, In Press, Accepted Manuscript, Available online 16 February 2007
[14]	 M. Groll and S. Khandekar, “An Insight into Therm-Hydrodynamic                               Coupling in Closed Loop Pulsating Heat Pipes,” Internatonal Journal of Thermal Sciences, Vol.43, pp.13-20 (2004).
[15]	G. Karimi and J. R. Culham, “Review and Assessment of Pulsating       Heat Pipe Mechanism for High Heat Flux Electronic Cooling,” Inter Society Conference on Thermal Phenomena, pp. 52-59 (2004).
[16]	S. Rittidech, P. Terdtoon , M. Murakami, P. Kamonpet and W.  Jompakdee, “Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition,” Applied Thermal Engineering, Vol. 23, pp. 497-510  (2003).
[17]	E. White and R. Beardmore, “The Velocity of Rise of Single  Cylindrical Air Bubbles through Liquids Contained in Vertical Tubes,” Chem. Engg. Science, Vol. 17, pp. 351-361 (1962).

[18]	H.Akachi, F. Polasek, and P. Stulc, “Pulsating Heat Pipes,”    Proceedings of the 5th International Heat Pipe Symposium, pp. 208-217 (1996).
[19]	 M. Groll and S. Khandekar, “On the Definition of Pulsating Heat  Pipe:An Overview,” Proc. 5th Minsk International Seminar (2003).
[20]	R. T .Doboson and T. M. Harms, “Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes,” Proceedings of 11th International Heat Pipe Conference, pp. 137-142 (1999).
[21]	W. H. Lee, H. S. Jung and J. H. Kim, “Flow Visualization of Oscillating Capillary Tube Heat Pipe,” Proceedings of the 11th International Heat Pipe Conference, Japan Association for Heat Pipes, pp. 131-136 (1999).
[22]	S. Khandekar, M. Schneider, P.Schafer, R. Kulenovic and M. Groll, “Thermofluid Dynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes,” Microscale Thermophysical Engineering, Vol. 6, Issue 4, pp. 303-318 (2002).
[23]	M. Groll and S. Khandekar, “Keynote Paper:State of the Art on Pulsating Heat Pipes.” Microchannels and Minichannels (2004).
[24]	S. Khandekar, N. Dollinger and M. Groll, “Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes an Experimental Study ,” Applied Thermal Engineering, Vol. 23, pp. 707-719 (2003).
[25]	J. L. Xu, Y. X. Li and T. N. Wong, “High Speed Flow Visualization of Closed Loop Pulsating Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3338-3351 (2005).
[26]	楊伯強,「應用矽膠微機電技術於微型壓力感測器之新型封裝」,碩士論文,淡江大學機械與機電研究所,台北,民國九十四年六月。
[27]	Byung-Ho Jo, Linda Van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, “Three-Dimensional Micro-Channel Fabrication in
Polydimethylsiloxane (PDMS) Elastomer,” Journal of                   Microeletromechanical System, Vol. 9, pp.76-81 (2000).
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信