§ 瀏覽學位論文書目資料
系統識別號 U0002-2707200713392800
DOI 10.6846/TKU.2007.01216
論文名稱(中文) TUUSAT-1A微衛星姿態控制系統設計與分析
論文名稱(英文) The Design and Analysis of Attitude Control System for Microsatellite TUUSAT-1A
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 黃彥臻
研究生(英文) Yen-Jen Huang
學號 694340497
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-13
論文頁數 82頁
口試委員 指導教授 - 洪祖昌(zchong@mail.tku.edu.tw)
委員 - 謝清志(cshieh@narl.org.tw)
委員 - 陳彥升(yenchen@nspo.org.tw)
委員 - 翁瑞麟(jsw.weng@nspo.org.tw)
關鍵字(中) TUUSAT-1A微衛星
姿態控制
模擬器
系統驗證計畫
關鍵字(英) TUUSAT-1A Microsatellite
Attitude Control
Simulator
System Verification Plan
第三語言關鍵字
學科別分類
中文摘要
本文根據微衛星TUUSAT-1A任務目標與符合各次系統之需求來設計姿態控制系統與軟體模擬器,簡稱TUUSIM (TUUSAT-1A SIMulator)。本文採用被動式磁控制系統(PMACS)是由兩個永久性磁鐵與四個磁滯棒並纏繞短路線圈所組成。為了驗證TUUSAT-1A姿態控制系統的效能,以MATLAB電腦程式語言來發展模擬器,模擬結果當從初始轉速180 rpm 降至0.3 rpm 所需要時間為2-3天,穩定後與地磁方向的指向誤差在15°以內,振動角為±5°,此設計符合TUUSAT-1A姿態系統需求。
為了驗證TUUSAT-1A次系統設計與效能由系統工程團隊所提出的TUUSAT-1A系統驗證計畫,由TUUSAT-1A機械系統研究團隊自行發展純軟體的分析工具TUUSIM。TUUSIM是一個任務模擬器在軌道與姿態控制系統(AOCS)模擬器的發展上,整合熱控制系統(TCS)、電源電力系統(EPS)、地面站遙測、命令與範圍(TC&R)與任務操作。
英文摘要
This thesis focuses on the design and analysis of the attitude control system (ACS) and the software simulator TUUSIM (TUUSAT-1A SIMulator) for microsatellite TUUSAT-1A. The subsystem requirements of the TUUSAT-1A ACS are allocated and defined according to the mission objectives and requirements. The passive magnetic attitude control system (PMACS) consisted of 2 permanent magnets and 4 hysteresis rods wrapped with shorted coils was adopted. In order to verify the performance of TUUSAT-1A ACS, the software simulator was developed by the MATLAB computer language. The simulation results of TUUSAT-1A ACS show that the deviation from the z-axis to geomagnetic field direction is less than 15 deg in steady-state and it needs about 2-3 days to slowdown the spin rate from 180 rpm to 0.3 rpm.
In order to verify the design and performances of TUUSAT-1A subsystems, the TUUSAT-1A System Verification Plan was proposed by the System Engineering Team. In order to achieve more realistic simulation and performance analysis, the full-software analytical tool TUUSIM was developed by the Mechanical Subsystem Research Team. TUUSIM is a mission simulator developed on the basis of orbital propagator and attitude simulator, and integrated the codes of thermal distribution, communication coverage, power generation, and mode operation together.
第三語言摘要
論文目次
目錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………………...………II
誌謝…………………………………………………………………..…III
目錄…………………………………………………………......………IV
表目錄…………………………………...………………………..……VII
圖目錄………………………………………….………………...…...VIII
名詞解釋………………………………………………………………..XI
第一章 序論
1-1 前言………………………..……………...…..…………….1
1-2 文獻回顧……………………………………………………5
1-3 研究動機與目的…………………………………………....8
1-4 論文架構………………………………………..…………10
第二章 姿態控制系統介紹與任務分析
2-1 姿態子系統介紹……………………………………….….11
2-2 姿態子系統方案……………………………….………….12
2-3 系統方案分析與選擇…………………………….……….15
2-4 TUUSAT-1A 任務分析…………………………..………15
V
第三章 軌道模型與數學模型的建立
3-1 衛星軌道模型…………………………….……..……..….17
3-2 地球磁場模型…………………………………..………....19
3-3 太陽位置模型………………………………..……..……..20
3-4 太陽能板能量產生…………………………..……..……..22
3-5 通訊系統建立…………………………………….……….23
3-6 系統數學模型…………………………………..…………24
3-7 環境作用力矩……………………………………….....….28
第四章 姿態系統設計與分析
4-1 姿態系統發展介面……………………..………...……….31
4-2 系統動態描述……………………………………...……...31
4-3 被動式磁控制硬體設計與分析…………………...……...33
4-3.1 硬體配置分析……………………………………...36
4-3.2 指向誤差分析……………………………….……..37
4-4 參數分析與選擇…………………………………………..38
4-5 模擬結果討論…………….……………….………………40
4-6 Worst Case 計算………………………………………….42
第五章 任務模擬器設計與分析
5-1 任務模擬器介紹…………………………………………..44
VI
5-2 TUUSIM 設計與發展……………………………………46
5-3 發展成果結果與結論…………………...…….…..………49
第六章 結論與未來展望
6-1 結論………………………………………………….…….51
6-2 未來展望…………………………………….…………….52
參考文獻………………………………………………….…………….53

表目錄
表1.1 世界微衛星姿態控制與穩定方式…………………56
表2.1 姿態系統設計流程…………………………………58
表2.2 姿態子系統控制方式………………………………58
表2.3 一般操作模式介紹…………………………………59
表2.4 方案特性比較………………………………………59
表2.5 方案成本比較………………………………………59
表2.6 衛星與地面站通訊估算……………………………60
表3.1  2000年到2005年地球磁場模型的高斯係數…….60
表4.1  AlNiCo-5材料特性表…………………………….61
表4.2  HyMu-80材料特性表………………………………61
表5.1  Excel Spreadsheets表單範例………………….62

圖目錄
圖2.1 被動式磁控制硬體配置圖…………………………62
圖2.2 被動式磁控制姿態運行圖…………………………62
圖2.3  YamSat三軸磁力控制硬體配置圖……………….63
圖2.4 三軸磁力控制姿態運行圖…………………………63
圖2.5 重力梯度穩定系統示意圖…………………………64
圖2.6 重力梯度桿配置圖…………………………………64
圖2.7 重力梯度穩定控制姿態運行圖……………………65
圖2.8 模擬可通訊範圍……………………………………65
圖3.1 軌道六元素示意圖…………………………………66
圖3.2 衛星軌道模擬與地面站……………………………66
圖3.3 磁偶示意圖…………………………………………67
圖3.4  L-Shell Model……………………………………67
圖3.5 模擬L-Shell Model下地磁變化量……………….68
圖3.6 模擬地球磁場在ECI座標下的變化量…………….68
圖3.7 地球與太陽旋轉角…………………………………68
圖3.8 本影區示意圖………………………………………69
圖3.9 太陽能板接收陽光之有效面積……………………69
圖3.10 地球、衛星與太陽位置關係圖………………….70
圖3.11 各面之陽光入射角……………………………….70
圖3.12 地面站與衛星間之仰角與方位角……………….71
圖3.13 天線追蹤範圍…………………………………….71
圖4.1 系統數學模式架構圖………………………………71
圖4.2 控制平面……………………………………………72
圖4.3 磁鐵與地磁作用圖…………………………………72
圖4.4 磁滯現象B-H曲線圖……………………………….72
圖4.5 磁滯棒重量與despin時間關係圖…………………73
圖4.6 被動式磁控制系統架構圖…………………………73
圖4.7 地磁緯度與水平面夾角之關係圖…………………74
圖4.8 硬體配置圖…………………………………………74
圖4.9 硬體配置與地磁指向之關係圖……………………75
圖4.10  HyMu-80材料B-H特性曲線圖……………………75
圖4.11 重量與despin時間關係圖……………………….76
圖4.12 模擬結果圖形…………………………………….76
圖4.13 衛星自旋角速度圖形…………………………….76
圖4.14 角速度向量輸出圖形…………………………….77
圖4.15  Worst case計算結果……………………………77
圖4.16 模擬Worst Case角速度輸出…………………….77
圖5.1系統驗證架構圖…………………………………….78
圖5.2 驗證概念圖…………………………………………78
圖5.3 軟體平台驗證概念圖………………………………79
圖5.4 衛星任務操作模式圖………………………………79
圖5.5 向光與背光區域功率輸出…………………………80
圖5.6 太陽能單元電流值輸出……………………………80
圖5.7 衛星與地面站通訊聯結……………………………80
圖5.8 衛星表面所照射到的輻射線面積…………………81
圖5.9 表面與內部平均溫度的變化………………………81
圖5.10 模擬器操作介面………………………………….81
圖5.11 系統測試平台架構……………………………….82
圖5.12  TUUSIM方塊圖….……………………………….82
參考文獻
[1]	Fischell, R.E., ”Magnetic Damping of the Angular Motion of Earth Satellite”, America Rocket Society Journal, Vol.31 ,No.9 ,Sept.1961 ,pp.1210-1217
[2]	Fischell, R.E., ”Passive Magnetic Attitude Control for Earth Satellite”, Advances in Astronautical Sciences, Vol.11 ,Jan.1962 ,pp. 147-177
[3]	Chen, Yu ,”The Damped Angular Motion of a Magnetically Oriented Satellite.” Journal of The Franklin Institute, Vol.280, No.4, 1965, pp.291-306
[4]	Ovchinnikov, Michael, “Attitude control system for the first Swedish nanosatellite 'MUNIN'” Acta Astronautica, v 46, n 2, 2000, p 319-326
[5]	M. Yu. Ovchinnikov, “Passive Magnetic Attitude Control System of the first Russian Nanosatellite TNS-0.” Preprint of the Keldysh Institute of Applied Mathematics RAS, 2005, N 46, 23p.
[6]	Ergin E.I, Wheeler P.C. “Magnetic Attitude Control of a spinning Satellite”, Journal of Spacecraft and Rockets ,1965, Vol. 2, No. 6, pp.846-850
[7]	Ping Wang, Yu. B. “Satellite Attitude Control Using only Magnetorquers” AIAA paper 98-4430
[8]	Michele Grassi, “Attitude Determination and Control for A Small Remote Sensing Satellite” , Acta Astronautica Vol. 40, No. 9, 1997 ,pp. 675-681
[9]	Wisniewski, Rafal, “Fully magnetic attitude control for spacecraft subject to gravity gradient”, Automatica, v 35, n 7, Jul, 1999, p 1201-1214
[10]	Bak, T.; Wisniewski, R.; Blanke, M. “Autonomous attitude determination and control system for the Ørsted satellite” Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE Vol. 2,  3-10 Feb. 1996 Page:173 - 186
[11]	林煥榮,洪祖昌,李大本,陳正興等, ”小(微)衛星姿態控制分析與設計” ,中國航空太空學刊, Vol.29, No.2, 1997, pp.109-144
[12]	C.H. Lin ,Z.C. Hong, C.H. Shih ,and C.K. Chuang, “The Passive Magnetic Stabilization used Magnetic Rods for a Microsatellite TUUSAT-1 ” , presented at 50th International Astronautical Congress , Amsterdam, The Netherlands, 4-8 OCT 1999./IAF-ST-99-W.1.06.
[13]	C. H. Lin, Z. C. Hong , H. J. Lin, “The Imagery Payload Design for Passive Magnetically Stabilized Micro-satellite” , AIAA Journal of Spacecraft and Rocket,Vol.40,,No.3,May-June,2003, p396-404
[14]	Chung-Hsien Lin ,Zuu-Chang Hong , “Mission and Constellation Design for Low-Cost Weather Observation Satellites”, Journal of Spacecraft and Rockets ,Vol. 41, No. 3, May–June 2004
[15]	C.H. Lin ,Z.C. Hong , C.J. Shieh  “The Constellation Design of Weather Observation Mission for Gravity-Gradient Stabilized Microsatellites”, Journal of Mechanics, Vol. 20, No. 3, September 2004
[16]	Z. C. Hong, Y. H. Chen, C. H. Lin and J. S. Chern, “Aerodynamics and Gravity Gradient Stabilization for Microsatellites”, Acta Astronautica, Vol. 46, No.7 ,2000, pp. 491-499
[17]	J.F. Levesque, “Passive Magnetic Attitude Stabilization using Hysteresis Materials” Intelligent Systems,Mechatronics and Aerospace. http://www.geocities.com/jflev/cubesim.htm
[18]	Santoni, F., Bolotti, F.,”Attitude determination of small spinning spacecraft using three axis magnetometer and solar panels data” Aerospace Conference Proceedings, 2000 IEEE Vol. 7, 18-25 March 2000 ,pp.127-133
[19]	Lovera, Marco. ,Astolfi.Alessandro,”Global magnetic attitude control of spacecraft in the presence of gravity gradient.” IEEE Transactions on Aerospace and Electronic Systems, v 42, n 3, 2006, p 796-804
[20]	Ashenberg, Joshua, Lorenzini, Enrico C. “Active gravity-gradient stabilization of a satellite in elliptic orbits”, Acta Astronautica, v 45, n 10, Nov, 1999, pp. 619-627
[21]	Lovera, M. , Astolfi, A. “Spacecraft attitude control using magnetic actuators.” Automatica, v 40, n 8, August, 2004, pp.1405-1414
[22]	Ovchinnikov, Michael; Pen'kov, Vladimir. “Attitude control system for the first Swedish nanosatellite 'MUNIN'.” , Acta Astronautica, v 46, n 2, 2000, pp. 319-326
[23]	Menges,B.M., Guadiamos, C.A. and Lewis, E.K., “Dynamic Modeling of Mirco-Satellite Spartnik’s Attitude.” ,Region VI AIAA Student Conference, Seattle, Washington, April 1997.
[24]	Wertz, J.R. ,Larson, W.J. “Space Mission Analysis and Design”, Kluwer Academic Publishers,Dordrecht,The Netherlands, 1991.
[25]	Wertz, J.R. “Spacecraft Attitude Dynamics and Control”, Krieger Publishing Company,Florida, 1991, pp.77-111.
[26]	Arthur E., Bryson,JR. “Control of Spacecraft and Aircraft”, Princeton university press, pp.50-163
[27]	http://ssdl.stanford.edu/ssdl/index.php
[28]	Sanguk Lee, Sungki Cho, “Design, Implementation, and Validation of KOMPSAT-2 Software Simulator”, ETRI Journal, Volume 27, Number 2, April 2005
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
校內書目立即公開
校外
不同意授權予資料庫廠商

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信