§ 瀏覽學位論文書目資料
系統識別號 U0002-2707200710192800
DOI 10.6846/TKU.2007.01215
論文名稱(中文) 銀奈米流體應用於燒結式熱管效益之研究
論文名稱(英文) A Study of Silver Nanofluid on Sintered Heat Pipe Thermal Performance
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 黃嘉慶
研究生(英文) Chia-Ching Huang
學號 694340117
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-06
論文頁數 74頁
口試委員 指導教授 - 康尚文
委員 - 陳志臣
委員 - 顏政雄
委員 - 楊龍杰
委員 - 陳育堂
關鍵字(中) 奈米流體
熱管
熱阻
關鍵字(英) Nanofluid
Heat Pipe
Thermal resistance
第三語言關鍵字
學科別分類
中文摘要
本研究使用銀奈米顆粒分散於純水中,以做為燒結毛細結構0.7mm厚的圓形熱管之工作流體。實驗中銀奈米顆粒之粒徑為10nm及35nm。奈米流體濃度分別為1ppm、10 ppm、100 ppm。實驗中量測奈米流體與純水充填於熱管之溫度分佈與溫差來呈現其性能,而研究中使用水溫40℃之恆溫水槽來做為熱管測試冷凝端,輸入功率為30W至70W。
    實驗結果指出,在相同的充填率、輸入功率50W下,充填銀奈米流體熱管之熱阻比充填純水熱管降低了21%至55%。此外,當奈米流體為熱管之工作流體時,其最高操作功率為70W,比充填純水之熱管高出20W。本實驗也探討了銀奈米流體熱管連續運作12小時,結果顯示銀奈米流體熱管運作穩定,並重現溫差較去離子水熱管低之優點。
英文摘要
Dilute dispersion of silver nanoparticles in pure water was employed as the working fluid for conventional 0.7mm wick-thickness sintered circular heat pipe. The nanofluid used in present study is an aqueous solution of 10nm and 35nm diameter silver nanoparticles. The tested nanoparticle concentrations ranged from 1ppm, 10ppm and 100ppm, respectively.
The experiment was performed to measure the temperature distribution and compare the heat pipe temperature difference using nanofluid and DI-water. The condenser section of the heat pipe was placed in a water-cooling jacket that was cooled by water supplied from a constant temperature bath maintained at 40 degrees centigrade. The input power are 30W-70W.
As a result, at the same charge filling ratio, the measured nano-fluids filled heat pipe temperature distribution demonstrated that the thermal resistance decreased 21~55% compared to DI-water at an input power of 50W. In addition, the nanofluid as working medium in heat pipe reached to 70W and is higher than pure water about 20W. The study also investigates the thermal performance of silver nanofluid heat pipe under 12 hours testing. The result reappeared that the nanofluid heat pipe was stable and temperature difference was lower than DI-water filled in the test period.
第三語言摘要
論文目次
中文摘要..................................................I
英文摘要.................................................II
目錄.....................................................IV
圖目錄...................................................VI
表目錄.................................................VIII
第一章 緒論...............................................1
1.1 研究動機..............................................1
1.2 研究背景..............................................3
1.2.1 熱管文獻回顧........................................3
1.2.2 奈米流體文獻回顧....................................7
1.2.3 奈米流體應用於熱管文獻回顧.........................12
1.3 研究目的.............................................17
第二章 熱管簡介..........................................18
2.1 熱管構造與工作原理...................................18
2.2 熱管設計與考量.......................................19
2.3 熱管限制.............................................21
第三章 奈米流體..........................................24
3.1 奈米流體簡介.........................................24
3.2 奈米顆粒的製備.......................................25
3.3 奈米流體的製備.......................................26
3.4 奈米流體熱傳導係數...................................28
3.4.1 奈米流體熱傳導係數量測.............................28
3.4.2 奈米流體熱傳導係數理論公式.........................29
第四章 實驗設備與方法....................................32
4.1 熱管備製.............................................32
4.1.1 熱管規格...........................................32
4.1.2 工作流體之充填.....................................33
4.1.3 工作流體抽氣封入...................................34
4.1.4 二次除氣...........................................34
4.1.5 時效化.............................................36
4.2 熱管測試設備.........................................36
4.2.1 實驗設備...........................................37
4.3 熱管性能測試.........................................40
4.3.1 熱電偶線溫度校正...................................40
4.3.2 實驗步驟...........................................42
4.3.3 熱管性能評估.......................................44
第五章 實驗結果與討論....................................45
5.1 相同粒徑,不同濃度下之影響...........................45
5.2 相同濃度,不同粒徑下之影響...........................49
5.3 熱管性能分析.........................................53
5.4 熱管十二小時運作測試.................................58
第六章 總結與未來建議....................................62
6.1 總結.................................................62
6.2 未來建議.............................................63
參考文獻.................................................65
附錄一 熱管性能測試實驗數據..............................68
附錄二 熱管十二小時運作測試實驗數據......................72
附錄三 不準度分析........................................74

圖1.1 Gauglar 提出的熱管與應用............................6
圖1.2 樹枝狀與球狀銅粉燒結毛細結構應用於熱管內之性能......6
圖1.3 不同操作角度對於不同毛細結構熱管之影響..............7
圖1.4 不同濃度奈米流體之沸騰曲線.........................10
圖1.5 不同奈米流體蒸發液滴中心與外圍溫差.................10
圖1.6 不同奈米流體的熱傳導係數...........................11
圖1.7 氧化鋁奈米流體之熱傳導係數提升百分比...............11
圖1.8 不同奈米流體之臨界熱通量...........................12
圖1.9 充填去離子水與金奈米流體熱管之效能.................14
圖1.10 充填去離子水與銀奈米流體熱管之效能................15
圖1.11 去離子水與銀奈米流體熱管之效能比較................15
圖1.12 金奈米流體熱管之效能比較..........................16
圖1.13 充填銀奈米流體與去離子水之TLT各點溫度.............16
圖1.14 充填鑽石奈米流體與去離子水之震盪式熱管熱阻比較....17
圖2.1 熱管構造示意圖.....................................19
圖2.2 常見的熱管毛細結構示意圖...........................21
圖2.3 熱管熱傳限制示意圖.................................23
圖3.1 常見奈米粉體製程技術...............................26
圖3.2 真空蒸鍍法製造奈米顆粒示意圖.......................26
圖4.1 熱管備製流程.......................................32
圖4.2 熱管毛細結構所使用之銅粉...........................33
圖4.3 工作流體抽氣封入示意圖.............................35
圖4.4 二次除氣示意圖.....................................35
圖4.5 實驗機台示意與熱電偶線量測位置圖...................37
圖4.6 電源供應器與加熱棒.................................39
圖4.7 電木箱與恆溫水槽...................................39
圖4.8 水冷套件與資料擷取器...............................40
圖4.9 校正設備示意圖.....................................41
圖4.10 校正設備之標準溫度計..............................41
圖4.11 熱電偶線黏貼位置示意圖............................43
圖4.12 熱管架設完成圖....................................43
圖5.1 粒徑10nm不同濃度之各點平均溫度.....................47
圖5.2 粒徑35nm不同濃度之各點平均溫度.....................48
圖5.3 相同粒徑不同濃度下之平均溫差.......................48
圖5.4 不同輸入功率下濃度1ppm之各點平均溫度...............50
圖5.5 不同輸入功率下濃度10ppm之各點平均溫度..............51
圖5.6 不同輸入功率下濃度100ppm之各點平均溫度.............52
圖5.7 相同濃度不同粒徑下之平均溫差.......................53
圖5.8 相同粒徑不同濃度下之平均熱阻.......................55
圖5.9 相同濃度不同粒徑下之平均熱阻.......................56
圖5.10 不同粒徑不同濃度下之平均熱阻......................56
圖5.11 不同粒徑、濃度下輸入功率與溫度之關係..............57
圖5.12 不同粒徑、濃度下溫度對應於時間之關係..............60
圖5.13 不同粒徑、濃度下溫差對應於時間之關係..............61
圖5.14 不同粒徑、濃度下熱阻對應於時間之關係..............61

表1.1 常見固體與流體之熱傳導係數..........................2
表3.1 奈米流體熱傳導係數之相關實驗成果...................29
表3.2 奈米流體熱傳導係數理論式之相關研究結果.............31
參考文獻
[1]http://www.intel.com/tw/
[2]R. S. Gaugler, “Heat transfer Device”, U.S. Patent 2350348 (1944).
[3]G. M. Grover, “Evaporation-Condensation Heat Transfer Device,” U.S. Patent 3229759 (1966).
[4]D. A. Pruzan, L. A. Klingensmith, K. E. Torrance, C. T. Avedisian, “Design of High-Performance Sintered-Wick Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 34, Issue 6, pp. 1417-1427 (1991).
[5]K. C. Leong, C. Y. Liu, G. Q. Lu, “Characterization of Sintered Copper Wicks Used in Heat Pipes,” Journal of Porous Materials, Vol. 4, pp. 303-308 (1997).
[6]卓世傑,王金樹,「銅粉燒結型微熱管之研究」,碩士論文,台北科技大學,台北,民國88年。
[7]Y. M. Chen, S. C. Wu, C. I. Chu, “Thermal Performance of Sintered Miniature Heat Pipes,” Heat and Mass Transfer, Vol. 31, pp. 611-616 (2001).
[8]Y. S. Tsai, Y. M. Chang, J. H. Chan, S. C. Wu, Y. M. Chen, “Enhancement of Thermal Performance in Sintered Miniature Heat Pipe,” Journal of the Chinese Institute of Engineers, Vol. 28, pp. 359-363 (2005). 
[9]C. K. Loh, E. Harris, D. J. Chou, “Comparative study of heat pipes performances in different orientations,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 191-195 (2005).
[10]S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” ASME, FED, Vol. 231, pp. 99-105 (1995).
[11]S. M. You, J. H. Kim, K. H. Kim, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,” Applied Physics Letters, Vol. 83, pp. 3374-3376 (2003).
[12]C. H. Li, G. P. Peterson, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)”, Journal of Applied Physics, Vol. 99, pp. 084314-1-7 (2006).
[13]C. H. Chan, S. Paik, J. B. Tipton Jr., K. D. Kihm, “Effect of Nanoparticle Sizes and Number Densities on the Evaporation and Dryout Characteristics for Strongly Pinned Nanofluid Droplets,” Langmuir, Vol. 23, pp. 2953-2960 (2006).
[14]X.-Q. Wang, A. S. Mujumdar, “Heat Transfer Characteristics of Nanofluids: A Review,” International Journal of Thermal Sciences, Vol. 46, pp. 1-19 (2007).
[15]C. H. Li, G. P. Peterson, “The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nanofluids,” Journal of Applied Physics, Vol. 101 (2007).
[16]S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, “Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 4105-4116 (2007).
[17]C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, P. H. Chen, “Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance,” Material Letters, Vol. 58, pp. 1461-1465 (2004).
[18]K.-H. Park, W.-H. Lee, K.-W. Lee, I.-H. Baek, S.-H. Rhi, D.-R. Shin, “Study on the Operating Characteristics in Small Size Heat Pipe using Nanofluids,” Proceedings of the 3rd IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Greece (2005).
[19]S. W. Kang, W. C. Wei, S. H. Tsai, S. Y. Yang, “Experimental Investigation of Silver Nano-Fluid on Heat Pipe Thermal Performance,” Applied Thermal Engineering, Vol. 26, pp. 2377-2382 (2006)
[20]Y. Abe, K. Tanaka, M. Mochizuki, M. Sato, N. Di Francescantonio, R. Savino, “Heat Pipes with Self-Rewetting Fluids,” The 8th International Heat Pipe Symposium , Japan (2006). 
[21]S.-h. Rhi, K. Cha, K.-W. Lee, Y. Lee, “A Two-Phase Loop thermosyphons with Nanofluids,” International Heat Pipe Conference (13th IHPC), China (2004).
[22]H. B. Ma, C. Wilson, Q. Yu, K. Park, U. S. Choi, M. Tirumala,  “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe,” Journal of Heat Transfer, Vol. 128, pp. 1213-1216 (2006).
[23]A. Faghri, Heat Pipe Science and Technology, Taylor&Francis, New York, U.S.A. (1995).
[24]依日光,「熱管技術理論實務」,復漢出版社,台南,民國88年。
[25]G. P. Peterson, An Iintroduction to HEAT PIPES Modeling, Testing, and Applications, WILEY-INTERSCIENCE, New York, U.S.A. (1994).
[26]Y. Xuan, Q. Li, “Heat Transfer Enhancement of Nanofluids,” International Journal of Heat and Flow, Vol. 21, pp. 58-64 (2000).
[27]馬振基,「奈米材料科技原理與應用」,全華科技圖書股份有限公司,台北,民國92年。
[28]丁志明 等人,「奈米科技 –基礎、應用與實作–」, 高立圖書有限公司,台北,民國94年。
[29]魏維瑲,「奈米流體應用於熱管之熱傳分析」, 碩士論文,淡江大學,台北,民國93年。
[30]J. P. Holman, Experimental Methods for Engineers, McGraw-Hill, Singapore. (1989).
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信