§ 瀏覽學位論文書目資料
系統識別號 U0002-2707200512365900
DOI 10.6846/TKU.2005.00930
論文名稱(中文) 雙苯咪唑取代聯吡啶錯合物之合成與性質
論文名稱(英文) Syntheses and Characterizations of Ru Complexes with 4,4'-dibenzimidazole-2,2'-bipyridine
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 黃建益
研究生(英文) Chien-Yi Huang
學號 691170319
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-17
論文頁數 90頁
口試委員 指導教授 - 王文竹(wjw@mail.tku.edu.tw)
委員 - 陳秋炳(cpcheng@mx.nthu.edu.tw)
委員 - 張一知(changijy@scc.ntnu.edu.tw)
關鍵字(中)
苯咪唑
聯吡啶
關鍵字(英) ruthenium
benzimidazole
bipyridine
第三語言關鍵字
學科別分類
中文摘要
由起始物4甲基吡啶(4-methyl,2-pyridine)成功合出雙苯咪唑取代聯吡啶(4,4'-dibenzimidazole-2,2'-bipyridine),並以氫核磁光譜加以確定。並成功以雙苯咪唑取代聯吡啶與釕金屬形行成二價釕金屬錯合物[Ru(DBBP)(bpy)2](PF6)2。
    在吸收光譜中,二價釕金屬聯吡啶錯合物的MLCT吸收在480nm,另有一組從釕金屬到苯咪唑的MLCT再365nm;在冷光光譜中可用三個激發光源λex = 330nm、λex = 360nm和λex = 470nm,得到二個發光分別為 λem = 410nm和λem = 640nm。
    藉由鹼滴定可得到兩個pKa,pKa1 = 7.7 和pKa2 = 12.4是聯吡啶的兩個苯咪唑amine上的氫原子脫離的結果;在冷光光譜中pH小於10.37,兩組放光強度 (λem = 410nm和λem = 640nm)逐漸增強,pH>10.37兩組放光強度逐漸減弱;在激發態可捯到兩組pKa*,分別為pKa* = 6.3和pKa* = 12.6;並且在酸鹼滴定,放光具有再現性。在氧化滴定的電子吸收光譜中,釕金屬從二價氧化成三價,365nm和480nm位置的MLCT均消失;在冷光光譜中的二組放光也消失。
    另外在離子溶液的滴定中,冷光光譜λem = 410nm放光強度逐漸減弱,λem = 640nm放光強度逐漸增加,並可在λem = 410nm的放光強度得知苯咪唑取代聯吡啶釕金屬錯合物對離子溶液的靈敏度為Zn(ClO4)2、Hg(CH3COO)2>Cd(CH3COO)2、Eu(ClO4)3。在甲醇溶液中,汞離子與錯合物之間並不會有作用力的存在。
英文摘要
4,4'-dibenzimidazole-2,2'-bipyridine (DBBP) was synthesized from 4-methyl- 2-pyridine and had been identify by H1-NMR. [Ru(DBBP)(bpy)2](PF6)2 was also obtained by reflux of 4,4'-dibenzimidazole-2,2'-bipyridine with [RuCl2(bpy)2]. Electronic absorption spectra and luminescence spectra were measured for [Ru(DBBP)(bpy)2](PF6)2 complex. MLCT bands of [Ru(DBBP)(bpy)2](PF6)2 at 480nm and 365nm were observed. The emission spectrum of title complex upon excited at λex = 330、360、470nm. Ru(DBBP)(bpy)2](PF6)2 exhibits emission at 410nm and 640nm. From pH titration experiment of electronic absorption and luminescence spectra of DBBP two pKa value of pKa1 11.36 and pKa2 12.45 for ground state. [Ru(DBBP)(bpy)2](PF6)2 has two pKa values at 7.72 and 12.48 was come from and pK*a1 = 6.3 and pK*a2 = 12.6 for excited state deprotonation on imidazole group. In oxidative titration of Ru complex the electronic spectrum showed MLCT bands at 365nm and 480nm was disappeared which was attributed as oxidization of RuII to RuIII. This phenomenon was also found in luminescent titration spectrum. Finally, [Ru(DBBP)(bpy)2](PF6)2 had ability to sensing Zn(ClO4)2、Hg(CH3COO)2、Cd(CH3COO)2 and Eu(ClO4)3, the same concentration but different kind of cation can effect the intensity of emission band at 410nm, which can provided an examination tool for sensing heavy metals in solvent. In methanol the complex has no interaction with mercury.
第三語言摘要
論文目次
目錄
中文摘要
英文摘要
第一章
1-1多吡啶釕錯合物系統................................1
1-2 過渡金屬錯合物酸鹼性質與發光性質.................3
1-3苯咪唑與咪唑的發展................................5
1-4釕金屬錯合物的應用................................6

第二章 實驗部份
2-1藥品.............................................10
2-2 合成部份........................................11
2-3 物理測定方法....................................15

第三章 結果與討論
3-1 合成............................................18
3-1-1 晶體結構......................................19
3-2 錯合物的電化學..................................21
3-3配位子的電子吸收光譜.............................28
3-3-1配位子的理論計算...............................29
3-3-2配位子之pH效應.................................31
3-3-3配位子的pKa....................................32
3-4錯合物的吸收光譜.................................35
3-4-1錯合物的pH效應.................................36
3-4-2 錯合物的Pka...................................38
3-4-3 錯合物的氧化..................................41
3-5發光光譜之研究...................................43
3-5-1配位子的放射光譜...............................44
3-5-2配位子之pH效應之放射光譜.......................45
3-6 錯合物之放射光譜................................46
3-6-1錯合物之pH效應之放射光譜.......................48
3-6-2錯合物的生命期.................................52
3-6-3錯合物的pKa*...................................53
3-6-4錯合物氧化之放射光譜...........................55
3-6-5錯合物與金屬離子效應...........................57

第四章 結論.........................................69
參考資料............................................71
附錄
附圖A...............................................73
附圖B...............................................78
附圖C...............................................83
附表................................................86
Fig.1 The NMR spectrum of DBBP in d6-DMSO....18
Fig.2 The NMR spectrum of [Ru(DBBP)(bpy)2](PF6)2 in d6-DMSO....18
Fig.3 The X-ray structure of [Ru(DBBP)(bpy)2](PF6)2....19
Fig.4 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 ....23
Fig.5 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 scan range -0.7 to -1.2....25
Fig.6 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 scan range -1.2 to -1.6....25
Fig.7 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 scan range -1.6 to -1.7....26
Fig.8 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 scan range -0.7 to -1.2....26
Fig.9 Cycle voltametry of DBBP....27
Fig.10 UV-vis spectrum of (DBBP) 8X10-5 M in 40ml DMSO....28
Fig.11 The DBBP structure by MOPAC PM3....29
Fig.12 The UV-Vis spectrum of DBBP calculated by MOPAC ZINDO....30
Fig.13 The UV-Vis spectra of DBBP in different pH....32
Fig.14 pH dependent UV/Vis spectrum of DBBP....33
Fig.15 pH dependent UV/Vis spectrum of DBBP....34
Fig.16 The UV-Vis. spectrum of complex [Ru(DBBP)(bpy)2](PF6)2....36
Fig.17 The UV-Vis spectra of [Ru(DBBP)(bpy)2](PF6)2 in different pH ....37
Fig.18 pH dependent UV/Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2....39
Fig.19 pH dependent UV/Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2....40
Fig.20 The change in the UV-Vis spectra of [Ru(DBBP)(bpy)2] (PF6)2 oxidation from Ru2+ to Ru3+....42
Fig.21 The emission spectra of DBBP....44
Fig.22 The emission of DBBP in different pH different....45
Fig.23 The emission spectra of [Ru(DBBP)(bpy)2](PF6)2 (λex= 330 nm)....46
Fig.24 The emission spectra of [Ru(DBBP)(bpy)2](PF6)2 (λex= 360 nm)....47
Fig.25 The emission spectra of [Ru(DBBP)(bpy)2](PF6)2 (λex= 472 nm)....47
Fig.26 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 in different pH λex = 330nm....50
Fig.27 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 in different pH λex = 360nm....51
Fig.28 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 in different pH λex = 472nm....52
Fig.29 pH dependent emission intensity of [Ru(DBBP)(bpy)2](PF6)2....54
Fig.30 pH dependent emission intensity of [Ru(DBBP)(bpy)2](PF6)2....54
Fig.31 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 from Ru2+ to Ru3+ λex = 330nm....54
Fig.32 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 from Ru2+ to Ru3+ λex = 360nm....56
Fig.33 The change in the emission spectra of [Ru(DBBP)(bpy)2](PF6)2 from Ru2+ to Ru3+ λex = 472nm....56
Fig.34 The UV-Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of Zn(ClO4)2....58
Fig.35 The emission spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc.of Zn(ClO4)2....59
Fig.36 The UV-Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc.of Cd(CH3COO)2....60
Fig.37 The emission spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc.of Cd(CH3COO)2....61
Fig.38 The UV-Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of Hg(CH3COO)2....62
Fig.39 The emission spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of Hg(CH3COO)2....63
Fig.40 The UV-Vis spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of Eu(ClO4)3....64
Fig.41 The emission spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of Eu(ClO4)3....65

Fig.42 The UV-Vis spectrum of[Ru(DBBP)(bpy)2](PF6)2 with different Conc. of TEAP....66
Fig.43 The emission spectrum of [Ru(DBBP)(bpy)2](PF6)2 with different Conc. of TEAP....67
Fig.44 The NMR spectrum of 4,4’-dimethyl-2,2’bipyridine....73
Fig.45 Thy NMR spectrum of 4,4’-dicarboxy-2,2-bipyridine....74
Fig.46 The NMR spectrum of DBBP....75
Fig.47 The NMR spectrum of (Ru(bpy)2)Cl2....76
Fig.48 The NMR spectrum of Ru(DBBP)(bpy)22+....77
Fig.49 The plot of [Ru(DBBP)(bpy)2](PF6)2 ipa (V1/2) VS. I at E1/2 = -0.95....78
Fig.50 The plot of [Ru(DBBP)(bpy)2](PF6)2 ipa (V1/2) VS. I at E1/2 = -1.36....78
Fig.51 The plot of  [Ru(DBBP)(bpy)2](PF6)2 ipa (V1/2) VS. I at E1/2 = -1.58....79
Fig.52 The plot of  [Ru(DBBP)(bpy)2](PF6)2 ipa (V1/2) VS. I at E1/2 = -1.89....79
Fig.53 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 
     scan range from -0.7 to -1.2....80
Fig.54 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 
     scan range from -1.2 to -1.6....80
Fig.55 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 
     scan range from -1.6 to -1.7....81
Fig.56 Cycle voltametry of [Ru(DBBP)(bpy)2](PF6)2 
     scan range from -1.7to -2.0....81
Fig.57 Cycle voltametry of DBBPscan range from -0.6 to -1.4....82
Fig.58 Cycle voltametry of DBBPscan range from -1.25 to -1.6....82
Fig.59 The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 400nm in acid....83
Fig.60 The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 400nm in neutral....83
Fig.61 The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 400nm in basic....84
Fig.62 The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 600nm in acid....84
Fig.63 The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 600nm in neuter....85
Fig64. The life-time of [Ru(DBBP)(bpy)2](PF6)2, λEm = 600nm in basic....85
參考文獻
(1) Juris, A; Balzani, V.; Barigelletti, F.; Coord. Chem. Rev. 1988, 84, 85
(2) F. H. Burstall, J. Am. Chem. Soc., 1936 173
(3) Vaska L., Diluzio, J. W. J. Am. Chem. Soc. 1961, 83, 2784
(4) Wilkinson, G. Inorg. Synth. 1982, 22, 99.
(5) Paris, J.P.;Brandt, W.W. J.Am. Chem. Soc. 1959,81,5001
(6) Dewey G. McCafferty, Barney M. Bishop, Bruce W. Erickson ;Tetrahedron 1995. 51, 4, 1093-1106, 
(7) Geisser, B.; Ponce, A.; Alsfasser, R. Inorg. Chem. 1999, 38, 2030
(8) T. Förster, Z. Elektrochem. 54 (1950) 42.
(9) Ireland, J. F.; Wyatt, P. A. H. Adv. Phys. Org. Chem. 1976, 28, 4251.
(10) A.P. de Silva, H.Q.N. Gunnlangasson, A.J.M. Huxley, C.P. McCoy,J.T. Rademacher, T.E. Rice, Chem. Rev. 1997, 97, 1515 
(11) J.G. Vos, Polyhedron 1992, 11, 2285
(12) Anzenbacher, P., Jr.; Tyson, D. S.; Jursikova, K.; Castellano, F. N.;   J. Am. Chem. Soc.; 2002, 124, 6232
(13) Wang, Ke-Zhi; Gao, Li-Hua; Bai, Guang-Yao; Jin, Lin-Pei. Inorganic Chemistry Communications 2002 841–843
(14) Haga, M.; Matsumura-Inoue, T.; Yamabe, S. Inorg. Chem. 1987,4148.
(15) Wang, K. Z.; Gao, L. H.; Bai, G. Y.; Jin, L. P. Inorg. Chem.Commun. 2002, 841.
(16) Cao, H.; Ye, B. H.; Zhang, Q. L.; Ji, L. N. Inorg. Chem..Commun.1999, 338.
(17) Furong Liu, Kezhi Wang, Guangyao Bai, Yongan Zhang, 
    Lihua Gao Inorg. Chem. 2004, 43, 1799
(18) Chao, H., Ye, B.-H., Zhang, Q.-L., Ji, L.-N. Inorganic Chemistry ommunication 2 , 338
(19) Zakir Murtaza, Qing Chang,, Joseph R. Lakowicz1
   Analy.. Bio. 247, 216–222 (1997)
(20) Pavel Anzenbacher, Jr.,Daniel S. Tyson, , J. Am. Chem. Soc. 2002,6232
(21) Lu, Jun; Yang, Bingqin; Bai, Yinjuan; Synth. Commun.; 2002; 3703 
(22) Beer, P. D.; Szemes, F.; Balzani, V.; Sala, C. M.;; Maestri, M.;J. Am. Chem. Soc.; 1997; 119; 11864
(23) Hui Chao, Bao-Hui Ye, Hong Li, Liang-Nian Ji Polyhedron; 2000 9,1975
(24)Che, C.M.;Cheng,K.W.;Chang, C.W.;Lau, T.C.;Mak, C.K.
   J. Org. Chem. 2000,65,7996
論文全文使用權限
校內
校內紙本論文立即公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信