參考文獻 |
[1] David Kubiznak, Hidden Symmetries of Higher Dimensional Rotating Black Holes, Ph.D. thesis, University of Alberta, Edmonton, Alberta, Canada(2008).
[2] Edward D. Fackerell and James R. Ipser, Weak Electromagnetic Fields Around a Rotating Black Hole, Phys. Rev. D5, 2455-2456(1972).
[3] Saul A. Teukolsky, Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations, Astrophysical Journal, Vol. 185, pp. 635-648 (1973).
[4] Jeffrey M. Cohen and Lawrence S. Kegeles, Electromagnetic fields in curved spaces: A constructive procedure, Phys. Rev. D, 10(1974) 1070-1084.
[5] Valeri P. Frolov and Igor D. Novikov, Black Hole Physics. Basic Concepts and New Developments, Springer (1997).
[6] Ezra Newman and Roger Penrose, An Approach to Gravitational Radiation by a Method of Spin Coefficients, J. Math. Phys. 3, 566-7-578 (1962).
[7] Paul L. Chrzanowski, Vector potential and metric perturbations of a rotating black hole, Phys. Rev. D11, 2042-2062(1975).
[8] Barrett O'Neill, The geometry of Kerr black holes, A.K. Peters (1995).
[9] I. M. Benn, Philip Charlton, and Jonathan Kress, Debye potentials for Maxwell and Dirac fi elds from a generalization of the KillingYano equation, J. Math. Phys. 38, 4504-4527 (1997).
[10] Naoki Hamamoto, Tsuyoshi Houri, Takeshi Oota, and Yukinori Yasui, KerrNUTde Sitter curvature in all dimensions, J. Phys. A40:F177-F184 (2007).
[11] S. Chandrasekhar, The mathematical theory of black holes, Clarendon Press; Oxford University Press (1983).
[12] Demmis Hansen, Killing-Yano tensors, indep. project report, the Niels Bohr Institute University of Copenhagen (2014).
[13] W. Chen, H. Lu and C.N. Pope, General Kerr-NUT-AdS Metrics in All Dimensions, Class. Quant. Grav.23, 5323-5340 (2006).
[14] Pavel Krtous, Valeri P. Frolov, and David Kubiznak, Hidden Symmetries of Higher Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A)dS spacetime, Phys. Rev. D78, 064022 (2008).
[15] Valeri P. Frolov, and David Kubiznak, Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables, Class. Quant. Grav.25:154005 (2008).
[16] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, W. H. Freeman (1973).
[17] Misao Sasaki and Takashi Nakamura, Gravitational Radiation From a Kerr Black Hole. 1. Formulation and a Method for Numerical Analysis, Prog. Theor. Phys.67, 1788-1809 (1982).
[18] Scott A. Hughes, Computing radiation from Kerr black holes: Generalization of the Sasaki-Nakamura equation, Phys. Rev. D62:044029 (2000); Erratum-ibid. D67:089902 (2003).
[19] Robert M. Wald, Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations, Phys. Rev. Lett.41, 203-206 (1978).
[20] Oleg Lunin, Maxwell's Equations in the Myers-Perry Geometry, Ph.D. thesis, University of Albany(SUNY), Albany, NY 12222, USA (2017).
[21] Pavel Krtous, Valeri P. Frolov, and David Kubiznak, Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes, JHEP (2018). |