淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2706201810591900
中文論文名稱 均匀不各向同性的宇宙
英文論文名稱 Homogeneous Anisotropic Cosmology
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生中文姓名 楊宇輝
研究生英文姓名 Yu-Hui Yang
電子信箱 543138659@qq.com
學號 604214014
學位類別 碩士
語文別 中文
口試日期 2018-06-26
論文頁數 33頁
口試委員 指導教授-曹慶堂
委員-劉國欽
委員-陳江梅
委員-曹慶堂
中文關鍵字 廣義相對論  群論  Kantowski-Sachs models  Bianchi metric 
英文關鍵字 General Relativity  Group Theory  Kantowski-Sachs models  Bianchi metric 
學科別分類 學科別自然科學物理
中文摘要 多種證據表明:目前宇宙空間在大尺度上是均勻各向同性的。空間的形狀以度規張量來表示,也就是要求度規張量不隨空間點而改變;也不隨方向而改變。雖然當前的宇宙大尺度是均勻各向同性的,卻不能排除早期宇宙可能的不均勻不各向同性。本篇最終介紹了均勻不各向同性的宇宙。這種模型的前提假設是:宇宙在其空間每一點的度規都一樣,在空間的每個方向度規不一定一樣。其中又分為滿足四維對稱群和三維對稱群的形式,分別稱作Kantowski-Sachs models和Bianchi metric。要描述這類宇宙需要用到的基礎理論是廣義相對論和群論,我在目前看到的資料中普遍發現對這兩種理論的介紹比較抽象。例如協變微分、李導數:它們都有其直觀的意義,雖然這兩個概念的創立不需要藉助高維卡氏坐標,但創立這些概念的人一定是先藉助三維空間下觀察二維彎曲空間的形態而產生靈感的。另外,擁有直觀的感受更容易學習和教授,本篇在介紹基礎理論也是盡量直觀,避免複雜的數學。
英文摘要 A variety of evidence shows that:Space is homogeneous isotropic on a large scale. Since the shape of the space is expressed in terms of a metric tensor, it means that the metric tensor does not change with the position and direction. Although the current large-scale universe is homogeneous and isotropic, it cannot exclude the possible non-isotropy of the early universe. This thesis introduced a homogeneous but anisotropic universe. The assumption of this model is that the Universe has the same metrics at every point in its space and that the metrics in each direction of space are not necessarily the same. It can satisfy four-dimensional symmetry groups and three-dimensional symmetry groups, which are called Kantowski-Sachs models and Bianchi metrics,respectively. The basic theory that needs to be used to describe this type of universe is general relativity and group theory. I have found in recent textbooks that the introduction of these two theories is rather abstract. For example, covariant derivative, Lie derivative: they all have their intuitive meaning. Although the creation of these two concepts does not require the use of higher-dimensional Cartesian coordinates, the inspiration must have come up when people observe the two-dimensional curved space in three-dimensional flat space. In addition, having intuitive sensations makes it easier to learn and teach. The basic theory involved in this thesis is made as intuitive as possible.
論文目次 介紹 1
第一章 廣義相對論簡介 2
1.協變導數 2
2.黎曼幾何 5
(1)測地線(geodesic) 5
(2)黎曼曲率(Riemann curvature) 6
(3)里奇張量(Ricci tensor) 9
3.愛因斯坦場方程 11
第二章 群 13
1.李導數 13
2.李群李代數 17
第三章 均勻宇宙 23
1.均勻各向同性宇宙 23
2.均勻不各向同性的宇宙 25
(1)Kantowski-Sachs models 26
(2)Bianchi metric 28
結論 32
參考文獻 33

參考文獻 [1] dXoverdteqprogress, (2017)General Relativity,檢自https://www.youtube.com/watch?v=BHKd6-IJgVI&list=PLbRB7u42hOE8rMIvShBxxiSdBdh9yQQL_
[2] John C.Baez&Emory F.Bunn,(2005)The Meaning of Einstein’s Equetion, Am.J. Phys. 73,644.
[3] 李瞬生, (2015)李導數的淺顯解釋, 檢自https://www.zhihu.com/question/22103215
[4] 張天蓉, (2015)統一路,5-8節, 檢自http://blog.sciencenet.cn/blog-677221-877226.html
[5] Collins,C.B.(1977).Global structure of the Kantowski-Sachs cosmological models. J.Math.Phys.,18,2116.
[6] Estabrook,Wahlquist,F.B.,Wahlquist,H.D.&Behr, C.G. (1968). Dyadic analysis of spatially homogeneous world models.J.Math.Phys.,9,497.
[7] Ellis,G.F.R.&MacCallum,M.A.H. (1969). A class of homogeneous cosmological models.Commun.Math.Phys.,12,108.
[8] Hawking, S.W. &Israel, W. (1979). Geneal Relativity, London, Cambridge University Press.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信