§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2706201715341400
DOI 10.6846/TKU.2017.00977
論文名稱(中文) 管柱實驗評估脫硫渣與轉爐石去除磷之研究
論文名稱(英文) Evaluation of Phosphate removal with desulfurization and blast oxygen furnace slags by column experiment
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 何珊
研究生(英文) Shan He
學號 604484013
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-15
論文頁數 73頁
口試委員 指導教授 - 康世芳(kangsf@mail.tku.edu.tw)
委員 - 李柏青(pclee@mail.tku.edu.tw)
委員 - 柯明賢(msko@ntut.edu.tw)
關鍵字(中)
脫硫渣
轉爐石
管柱動力
關鍵字(英) Phosphate
desulfurization slag
basic-oxygen-furnace slag
column kinetic
第三語言關鍵字
學科別分類
中文摘要
磷為引起藻華之限制營養源,削減磷污染負荷為控制湖泊水質優養化之重要策略之一;脫硫渣(Desulfurization slag,DS)與轉爐石(basic-oxygen-furnace slag,BOF)為鋼鐵工業副產物且為廉價吸附劑。本研究探討DS與BOF兩種爐石除磷效能,研究目的為:(1)比較DS與BOF除磷效能、(2)操作參數對DS與BOF除磷之影響、及(3)DS與BOF除磷之管柱動力學。以磷酸二氫鉀(KH2PO4)配製含磷人工廢水,操作參數包含DS與BOF添加量、接觸時間、初始磷濃度等,採等溫吸附實驗、管柱實驗評估DS與BOF除磷效能。
   實驗結果顯示DS與BOF於水中會溶出鈣離子且提高pH,與磷形成磷酸鈣Ca5(PO4)3(OH) (s) 沉澱物沉澱。因DS含鈣量大於BOF含鈣量, DS之單位磷吸附量約為BOF之3.2-4.9倍,顯示DS之磷去除效果較BOF更佳。DS與BOF對磷之吸附符合Freundlich 等溫吸附,DS之n值為4.95(大於1),對磷屬有利吸附。相對地,BOF之n值小於1,對磷屬不利吸附。磷初始濃度為100-200 mg /L且EBCT為10 min時,管柱實驗結果顯示DS於停止點之吸附量約為BOF之1.3-2.6倍。EBCT由20 min降至10 min時,DS之吸附量則由506 mg-P /g降至373 mg-P /g,EBCT愈短,則到達停止點時間愈快,且吸附量愈小。管柱動力學顯示DS之最大吸附量q0為BOF之1.55- 1.69倍。綜合上述,DS除磷性能優於BOF。
英文摘要
Abstract:
Phosphate is a limiting-nutrient to cause algal bloom. Desulfurization (DS) and basic-oxygen-furnace (BOF) slags are valuable by-products from steel industry and cost-effective adsorbates. This study evaluates the removal performance of phosphate from aqueous solution by DS and BOF slags. The aim of this study are (1) to compare the phosphate removal performance between DS and BOF, (2) to investigate the effect of operation parameters of the removal of phosphate, and (s) to evaluate the removal of phosphate by DS and BOF with column kinetics. All experiments were conducted by adsorption isotherm and column tests. The operational parameters included dosage of slags, contact time (or empty bed contact time, EBCT) and initial phosphate concentration. Both DS and BOF slags sampled from The China steel company. Furthermore, the synthetic phosphate-containing wastewater was prepared from potassium phosphate monobasic (KH2PO4). 
The result shows that both DS and BOF released Ca ions and induced pH of slag solution. The released Ca ions could react with phosphate to form Ca5(PO4)3(OH)(s) precipitates to remove phosphate. The released Ca ions of DS were larger than for BOF. The amount of adsorbed phosphate of DS was about 3.2-4.9 times of that for BOF. This implies that the performance on phosphate removal by DS was better that that by BOF. The removal of phosphate by DS and BOF followed the Freundlich adsorption isotherm model. The DS was favorable adsorption for phosphate, because the n value of DS was 4.9 (larger than 1). By contrast, due to n value being 0.34 (less than 1), BOF was unfavorable adsorption for phosphate. Furthermore, at initial phosphate concentration of 100-200 mg/L and EBCT of 10 min, the column test results show that the amount of adsorbed phosphate of DS was about 1.3-2.6 times of that for BOF. The amount of adsorbed phosphate decreased from 506 mg-p/g to 373 mg-p/g, as EBCT decreased from 20 min to 10 min. The shorter the EBCT is the faster to reach operational terminate point and the smaller amount of adsorbed phosphate. Column kinetics shows that the maximum amount of adsorbed phosphate, qo value, of DS was 1.55-1.69 times of that for BOF.  It is concluded that performance on phosphate removal of DS was better than that of BOF.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	III
表目錄	V
第一章、前言	                1
1.1研究緣起	                1
1.2研究計畫之目的         	2
第二章、文獻回顧	                3
2.1磷的特性	                3
2.1.1磷的性質、來源	        3
2.1.2磷對環境與人體的危害  	5
2.1.3磷的去除方法        	5
2.1.4水質標準磷之限值	        6
2.2 爐石之來源、特性及應用	7
2.2.1煉鋼爐石之產生	        7
2.2.2脫硫渣特性及應用	        9
2.2.3轉爐石特性及應用	        11
2.3 吸附原理	                13
2.3.1 Freundlich等溫吸附模式	15
2.3.2 Langmuir等溫吸附模式	16
第三章、實驗材料與方法	        17
3.1材料及設備	                17
3.1.1吸附劑與含磷人工水樣之配置	17
3.1.2實驗藥品	                18
3.1.3實驗設備	                19
3.1.4實驗架構	                20
3.2 吸附實驗	                21
3.2.1等溫吸附實驗	        21
3.2.2等溫動力吸附實驗	        21
3.3 管柱實驗	                22
3.3.1管柱實驗設計	        22
3.3.2管柱實驗計算	        25
3.4水質分析	                28
第四章、結果與討論	                31
4.1 DS與BOF對去除磷成效之影響因素	        31
4.1.1添加量對DS與BOF除磷成效之影響	31
4.1.2接觸時間對DS與BOF除磷成效之影響	33
4.1.3水洗對DS添加量去除磷成效之影響	37
4.2 DS與BOF管柱實驗	                39
4.2.1	DS與BOF 管柱試驗去除磷之對比實驗	39
4.2.2	不同濃度對管柱實驗吸附成效之影響	47
4.2.3不同流量對管柱實驗吸附成效之影響	56
4.2.4	DS與水洗DS管柱實驗吸附成效之比較	63
4.3	DS與EAF吸附磷之Freundlich等溫吸附	66
第五章、結論	                        68
參考文獻                         	69

 
圖目錄
圖2. 1 pH對磷水化學物種分佈之影響	        4
圖2. 2 轉爐石生產流程(中鋼,2005)	        8
圖2. 3 電弧爐煉鋼爐碴(石)生產過程 	8
圖3. 1 實驗架構	                        20
圖3. 2 管柱實驗架構	                24
圖3. 3 磷濃度與吸光值之檢量線	        29
圖4. 1 添加量對pH之影響	                32
圖4. 2 添加量對吸附劑吸附磷之影響	        32
圖4. 3 接觸時間對DS吸附磷之影響(P=200 mg/L)	        34
圖4. 4 接觸時間對DS吸附磷之吸附量影響(P=200 mg/L)	34
圖4. 5 接觸時間對BOF吸附磷之吸附量影響(P=200 mg/L)	36
圖4. 6 接觸時間對DS吸附磷之吸附量影響(P=200 mg/L)	36
圖4. 7 DS與水洗DS之添加量對除磷成效之影響	                37
圖4. 8 DS與水洗DS之添加量對除磷成效之影響	                38
圖4. 9 DS與BOF在相同條件下之pH變化趨勢	                39
圖4. 10 DS與BOF在相同條件下之鈣溶出變化趨勢	        40
圖4. 11 管柱實驗DS與BOF之貫穿曲線	                        41
圖4. 12 DS與BOF管柱動力學 DS(P=100 mg/L)	        44
圖4. 13 DS與BOF管柱動力學 BOF(P=50 mg/L)	        45
圖4. 14 DS與BOF管柱動力學 BOF(P=100 mg/L)	        45
圖4. 15 不同濃度對吸附劑管柱實驗pH變化之影響	        47
圖4. 16 不同濃度對吸附劑管柱實驗鈣溶出變化之影響	        48
圖4. 17 管柱實驗之鈣溶出與磷殘留率之變化	                49
圖4. 18 管柱實驗於不同濃度之貫穿曲線	                51
圖4. 19 不同濃度對管柱動力學之影響 DS (P=200 mg/L) 	52
圖4. 20 不同濃度對管柱動力學之影響 DS (P=400 mg/L) 	53
圖4. 21 不同濃度對管柱動力學之影響 BOF (P=200 mg/L)	54
圖4. 22 不同流量對吸附劑管柱實驗pH變化之影響	        56
圖4. 23 不同流量對吸附劑管柱實驗鈣溶出變化之影響	        57
圖4. 24 管柱實驗於不同流量之貫穿曲線	                59
圖4. 25 不同流量對管柱動力學之影響 DS(5 mL/min)  	60
圖4. 26 不同流量對管柱動力學之影響 DS(10 mL/min) 	61
圖4. 27 DS與水洗DS管柱實驗pH變化之對比	                63
圖4. 28 DS與水洗DS管柱實驗pH變化之對比	                64
圖4. 29 DS與水洗DS管柱實驗貫穿曲線之變化對比	        64
圖4. 30 DS與BOF吸附磷之Freundlich 等溫吸附(P=200 mg/L)  67
 

 
表目錄
表3. 1 實驗藥品	                                18
表3. 2 實驗設備                          	19
表3. 3 管柱實驗設計                         	23
表4. 1 DS與BOF於不同濃度之磷廢水貫穿實驗之結果	42
表4. 2 DS-100 mg/L之動力學數據              	43
表4. 3 管柱實驗動力學K與q0 實驗結果       	46
表4. 4 DS與BOF於不同濃度之磷廢水貫穿實驗之結果	51
表4. 5 管柱實驗動力學K與q0 實驗結果	        55
表4. 6 DS與BOF於不同濃度之磷廢水貫穿實驗之結果	59
表4. 7 管柱實驗動力學K與q0 實驗結果        	62
表4. 8 DS與水洗DS之磷廢水貫穿試驗結果       	65
表4. 9 DS與EAF之Freundlich等溫吸附數據      	66
參考文獻
1.Barca, C., Gérente, C., Meyer, D., Chazarenc, F., Andrès, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water research, 46(7), 2376-2384.
2.Bazzanti, M., Mastrantuono, L., Pilotto, F. (2016). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of The Total Environment.
3.Benefield, L. D., Judkins, J. F., Weand, B. L. (1982). Process chemistry for water and wastewater treatment. Prentice Hall Inc.
4.Benjamin, M. M. (2014). Water chemistry. Waveland Press. Pages 138–140.
5.Bhatnagar, A., Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157(2), 277-296.
6.Blanco, I., Molle, P., de Miera, L. E. S., Ansola, G. (2016). Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water research, 89, 355-365.
7.Bodor, M., Santos, R. M., Cristea, G., Salman, M., Cizer, Ö., Iacobescu, R. I., Van Gerven, T. (2016). Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars. Cement and Concrete Composites, 65, 55-66.
8.Bowden, L. I., Jarvis, A. P., Younger, P. L., and Johnson, K. L. (2009). Phosphorus removal from waste waters using basic oxygen steel slag. Environmental Science and Technology, 43(7), 2476-2481.  
9.Claveau-Mallet D, Wallace S. and Comeau Y., (2013) Removal of phosphorus, fluoride and metal from a gypsum mining leachate using steel slag filters, Water Research 47, 1512-1520.
10.Clark, R. M., Lykins, B. W. (1990). Granular activated carbon: design, operation and cost,Lewis Publishers.
11.Cogridge, D. E. C. (1995). Phosphorus, an outline of its chemistry, biochemistry, and technology. Elsevier, Amsterdam.
12.Dai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q. Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 198, 70-74.
13.Deeds, J. R., Wiles, K., Heideman, G. B., White, K. D., & Abraham, A. (2010). First US report of shellfish harvesting closures due to confirmed okadaic acid in Texas Gulf coast oysters. Toxicon, 55(6), 1138-1146.
14.Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y., (2006) Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research 40 (8),1547e1554.
15.Driggers, W. B., Campbell, M. D., Debose, A. J., Hannan, K. M., Hendon, M. D., Martin, T. L., Nichols, C. C. (2016). Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuarine, Coastal and Shelf Science, 168, 40-49.
16.Han, C., Wang, Z., Yang, H., Xue, X. (2015). Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. Journal of Environmental Sciences, 30, 21-29.
17.Han, C., Wang, Z., Yang, W., Wu, Q., Yang, H., Xue, X. (2016). Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecological Engineering, 89, 1-6.
18.Jaime Uribarri, Mona S. Calvo.(2017). Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals. Academic Press. Pages 429–436.
19.Kawatra, S. K., Ripke, S. J. (2002). Pelletizing steel mill desulfurization slag. International journal of mineral processing, 65(3), 165-175.
20.Ngatia, L. W., Hsieh, Y. P., Nemours, D., Fu, R., Taylor, R. W. (2017). Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption. Chemosphere, 180, 201-211.
21.Park, J. H., Kim, S. H., Delaune, R. D., Kang, B. H., Kang, S. W., Cho, J. S.,Seo, D. C. (2016). Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecological Engineering, 95, 612-621.
22.Park, W. H. (2009). Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecological Engineering, 35(8), 1275-1282.
23.Kim, E. H., Lee, D. W., Hwang, H. K., Yim, S. (2006). Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process. Chemosphere, 63(2), 192-201.
24.Sakadevan, K., Bavor, H. J. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2), 393-399.
25.Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126-139.
26.Tor, A., Danaoglu, N., Arslan, G., Cengeloglu, Y. (2009). Removal of fluoride from water by using granular red mud: batch and column studies. Journal of hazardous materials, 164(1), 271-278.
27.Wang, Q., Yan, P. (2010). Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 24(7), 1134-1140.
28.Wang, C. C. (2016). Modelling of the compressive strength development of cement mortar with furnace slag and desulfurization slag from the early strength. Construction and Building Materials, 128, 108-117.
29.Westholm, L. J. (2006). Substrates for phosphorus removal—Potential benefits for on-site wastewater treatment?. Water Research, 40(1), 23-36.
30.Wu, Q., You, R., Clark, M., Yu, Y. (2014).  Pb (II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. Applied surface science, 314, 129-137.
31.Yang, B. M., Lai, W. L., Chang, Y. M., Liang, Y. S., Kao, C. M. (2017). Using desulfurization slag as the aquacultural amendment for fish pond water quality improvement: mechanisms and effectiveness studies.
32.Zeng, L., Li, X., Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318-1326.
33.Zhou, W., Huang, Z., Sun, C., Zhao, H., Zhang, Y. (2016). Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag. Bioresource technology, 214, 534-540.
34.楊美蘭、鐘彥、林燕棠,1998,大鵬灣南澳養殖水域的氮、磷含量特徵,熱帶海洋學報(2),74-80。
35.李孫榮、張錦松、張錦輝、陳健民、曾如娟,1998,環工單元操作,: 高立圖書有限公司,臺北市,238-242。
36.司友斌、王慎強,2000,農田氮、磷的流失與水體富營養化,土壤,32(4),188-193。
37.張芳志、林志棟、王鯤生,2001, 轉爐石取代天然碎石於瀝青混凝土之探討. 海峽兩岸環境保護學術研討會。
38.楊萬發,2002,水及廢水處理化學,茂昌圖書有限公司,臺北市,401-405。
39.鄧雁希、許虹、黃玲、鐘佐燊,2003,爐渣處理含磷廢水的實驗研究,岩石礦物學雜誌,22(3),290-292。
40.黃富昌、李俊福、陳慶和、李中光、邱英嘉、陳淳圓、劉彥君,2005,以等溫吸/脫附動力曲線探討土壤對有機污染物吸附特性之研究,2005台灣環境資源永續發展研討會。
41.黃昭貴,2005,含磷污泥與鋁鹽污泥之共調理脫水,國立台灣科技大學化學工程學系碩士論文。
42.張鈞維,2006,以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究. 成功大學環境工程學系學位論文。
43.李敏菱,2011,利用轉爐石粉料處理含銅廢水之研究,臺北科技大學資源工程研究所學位論文。
44.周鈺蓉,2012,脫硫渣製備 tobermorite 濾材及其應用於廢水重金屬回收之研究,成功大學環境工程學系學位論文。
45.中鋼公司,2013,轉爐石對環境相容性之探討。
46.白曛綾、盧重興、張國財、曾映棠、黃欣惠,2003。「操作績效自我評估管理制度手冊–活性碳吸附塔」,新竹科學工業園區管理局。
47.王子婕,2014, 轉爐石吸附去除磷之研究,淡江大學水資源及環境工程學系碩士班學位論文。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信