§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2706201617480000
DOI 10.6846/TKU.2016.00927
論文名稱(中文) 車輛主動式懸吊系統之動態控制器設計
論文名稱(英文) Dynamic Controller Design of Vehicle Active Suspension Systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 張家偉
研究生(英文) Jia-Wei Jhang
學號 602460205
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-16
論文頁數 72頁
口試委員 指導教授 - 周永山
委員 - 容志輝
委員 - 吳政郎
關鍵字(中) 主動懸吊系統
動態輸出回授
控制力限制
H∞ 控制
有限頻段
關鍵字(英) Active suspension systems
Dynamic output feedback
Actuator limitation
H∞ control
Finite frequency
第三語言關鍵字
學科別分類
中文摘要
本論文研究車輛主動式懸吊系統之動態控制器設計。本文提出一套控制器設計方法,俾使車輛行駛於凹凸地面時有減震效果。
現存設計方法絕大多數採用靜態狀態回授,不同於以往,本文考慮動態輸出回授。本文提出一特殊轉換,可將動態輸出回授控制器的設計問題等價轉換為靜態狀態回授的設計問題,然後可應用現存方法完成設計。因此,車輛安全性的限制(即抓地能力與懸吊系統最大變形量)以及控制力的限制亦可整合於設計條件之中,此為歷來輸出回授設計方法難以達成的特色。另外,所研究問題可視為一窄頻雜訊之抑制問題。本文所提方法引入了內模型,並結合GKYP (generalized Kalman-Yakubovich-Popov, GKYP)引理,其能使干擾到控制輸出(即車身垂直方向的加速度)在指定頻段的H∞範數儘量小,因此可提高乘坐舒適性。
本論文所提出的設計條件皆為線性矩陣不等式(Linear Matrix Inequalities,LMIs),故可運用現存的軟體有效求解。本文運用Matlab及Simulink進行數值模擬,設計出動態控制器,將其與未引入內模型的全頻段H∞控制器進行頻域波德圖和時域響應圖之比較,模擬結果證實了所提設計方法之可行性及優越性。
英文摘要
In this thesis, the dynamic controller synthesis problem of vehicle active suspension systems is investigated. A controller design method is proposed which is capable of reducing the vibration of the vehicle when driving on uneven ground.
In contrast with the majority of the existing design methods which employ static state feedback, this thesis considers dynamic output feedback. A special transformation is introduced that equivalently converts the dynamic output feedback controller synthesis problem into a static state feedback design problem. Then the design can be completed by applying the available existing methods. The introduced transformation overcomes the difficulty of incorporating the constraints of road holding ability, maximum suspension deflection of the active suspension system, and actuator limitation into a output feedback design. This feature is hardly seen in the existing methods. In addition, the control problem is regarded as a narrow-band disturbance attenuation problem. To enhance ride comfort, the proposed methods introduce internal models into the design, combined with the generalized Kalman-Yakubovich-Popov (GKYP) Lemma in order to minimize the H∞ gain of the transfer function from the disturbance to the observed output (i.e., the vertical acceleration of the vehicle body) in the desirable restricted frequency range.
Synthesis conditions are derived in terms of linear matrix inequalities (LMIs), which can be efficiently solved by existing LMI solvers. Numerical simulation is conducted using Matlab and Simulink. Dynamic controllers are computed by the proposed methods and compared with the (entire frequency) H∞ controller design without introducing the internal models. Simulation results demonstrate the feasibility and effectiveness of the proposed design methods in terms of lower Bode diagrams and better time domain responses.
第三語言摘要
論文目次
中文摘要I
英文摘要II
目錄III
圖目錄VI
表目錄IX
第一章 緒論1
1.1前言1
1.2懸吊系統的分類2
1.3懸吊系統舒適度之評價方式4
1.4文獻回顧與研究動機4
1.5論文架構5
第二章 背景知識與問題敘述6
2.1問題敘述7
2.1.1  主動懸吊系統之數學模型7
2.1.2  主動懸吊系統之設計目標10
2.2背景知識11
第三章 主動懸吊系統動態輸回授控制器設計15
3.1前言15
3.2方法一:不含內模型16
3.2.1  系統架構16
3.2.2  動態控制器設計問題之轉換18
3.2.3  合成式條件	24
3.2.3.1  指定頻段H∞性能條件25
3.2.3.2  區域極點配置條件28
3.2.3.3  控制力受限及安全性條件31
3.2.4  動態控制器之還原公式32
3.3方法二:一般積分器之內模型33
3.3.1  系統架構33
3.3.2  動態控制器設計問題之轉換36
3.3.3  合成式條件	40
3.3.4  動態控制器之還原公式40
3.4方法三:針對窄頻之內模型41
3.4.1  系統架構41
3.4.2  動態控制設計問題之轉換44
3.4.3  合成式條件	48
3.4.4  動態控制器之還原公式48
第四章 數值模擬及實驗結果51
4.1前言51
4.2方法一之模擬結果52
4.3方法二之模擬結果55
4.4方法三之模擬結果58
4.5綜合比較及其他61
第五章 結論與未來研究方向69
參考文獻70

圖目錄
圖1.1	被動式懸吊系統2
圖1.2	半主動式懸吊系統2
圖1.3	主動式懸吊系統3
圖2.1	主動式懸吊四分之一車體模型7
圖2.2	P-K架構圖11
圖3.1	動態輸出回授系統整體架構16
圖3.2	動態輸出回授系統之P-K架構17
圖3.3	動態輸出回授系統架構19
圖3.4	靜態狀態回授架構24
圖3.5	動態輸出回授系統整體架構33
圖3.6	含內模型之受控體模型34
圖3.7	動態輸出回授系統之P-K架構35
圖3.8	動態輸出回授系統架構37
圖3.9	靜態狀態回授架構40
圖3.10	動態輸出回授系統整體架構41
圖3.11	含內模型之受控體模型42
圖3.12	動態輸出回授系統之P-K架構43
圖3.13	動態輸出回授系統架構45
圖3.14	靜態狀態回授架構48
圖4.1	干擾到車身垂直加速度之頻域響應圖(方法一)53
圖4.2	懸吊系統之Simulink模型54
圖4.3	懸吊模型之閉迴路控制系統Simulink模型54
圖4.4	主動懸吊系統之車身垂直加速度的時域響應圖(方法一)55
圖4.5	干擾到車身垂直加速度之頻域響應圖(方法二)57
圖4.6	主動懸吊系統之車身垂直加速度的時域響應圖(方法二)57
圖4.7	干擾到車身垂直加速度之頻域響應圖(方法三)59
圖4.8	主動懸吊系統之車身垂直加速度的時域響應圖(方法三)60
圖4.9	干擾到車身垂直加速度頻域響應之比較61
圖4.10	干擾到車身垂直加速度頻域響應圖之局部放大圖62
圖4.11	主動懸吊系統之車身垂直加速度的時域響應比較圖63
圖4.12	干擾到車身垂直加速度之頻域響應圖64
圖4.13	主動懸吊系統之車身垂直加速度的時域響應圖65
圖4.14	主動懸吊的限制條件之時域響應圖(方法三)66
圖4.15	干擾到車身垂直加速度之頻域響應比較圖	67
圖4.16	車身垂直加速度的時域響應比較圖(雜訊一)68
圖4.17	車身垂直加速度的時域響應比較圖(雜訊二)68

表目錄
表4.1	主動懸吊系統模型參數51
參考文獻
[1]	A. Titli, S. Roukieh, and E. Dayre, “Three control approaches for the design of car semi-active suspension ( optimal control, variable structure control, fuzzy control),” IEEE CDC,San Antonic,Texas,Dec.1993.
[2]	H. Li, H. Liu, H. Gao, and P. Shi, “Reliable fuzzy control for active suspension systems with actuator delay and fault,” IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 342-357, Apr. 2012.
[3]	Y.P. Kuo, N.S. Pai, J.S. Lin, and C.Y. Yang, “Passive vehicle suspension systems design using evolutionary algorithm,” Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop 2008. IEEE International Symposium on, pp. 292-2957, 2012.
[4]	F.J Meister., “Sensitivity of Human Beings to Vibration,” Forschung (V.D.I Berlin) May-June, 1935.
[5]	M. ElMadany and Z. Abduljabbar, “Linear quadratic Gaussian control of a quarter-car suspension,” Veh. Syst. Dyn., vol. 32, no. 6, pp. 479–497,1999. DOI: 10.1109/TMECH.2011.2107331.
[6]	C. S. Ting, T. H. Li, and F. C. Kung, “Design of fuzzy controller for active suspension system,” Mechatron., vol. 5, no. 4, pp. 365–383, 1995.
[7]	F. J. D’Amato and D. E. Viasallo, “Fuzzy control for active suspensions,”Mechatronics, vol. 10, no. 8, pp. 897–920, Dec. 2000.
[8]	N. Al-Holou, T. Lahdhiri, D. Joo, J. Weaver, and F. Al-Abbas, “Sliding mode neural network inference fuzzy logic control foractive suspension systems,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 234–246, Apr. 2002.
[9]	S. Chantranuwathana and H. Peng, “Practical Adaptive Robust controllers for Active suspensions,” Proceedings of the 2000 ASME International Congress and Exposition (IMECE), 2000.
[10]	H. Gao,W. Sun, and P. Shi, “Robust sampled-data H∞ control for vehicle active suspension systems,” IEEE Trans. Control Syst Technol., vol. 18,no. 1, pp. 238–245 , Jan. 2010.
[11]	H. Chen and K. Guo,“Constrained H∞ control of active suspensions:An LMI approach,” IEEE Trans. Control Syst. Technol., vol. 13, no. 3,pp. 412–421, May. 2005.
[12]	T. Toda, K. Suzuki, G. Chen, and I. Takami, “Robust control of active suspension-Improvement of ride comfort and driving stability using half car model, ” SICE Annual Conference 2015 July 28-30, 2015, pp. 548-553.
[13]	H. Du and N. Zhang, “H∞ control of active vehicle suspensions with actuator time delay,” J. Sound Vib., vol. 301, no. 1/2, pp. 236–252,Mar. 2007.
[14]	W. Sun, Y. Zhao, J. Li, L. Zhang, and H. Gao, “Active suspension control with frequency band constraints and actuator input delay,” Industrial Electronics, IEEE Transactions on, vol. 59, NO. 1,pp. 530-537, 2012.
[15]	H. Y. Li, X. J. Jing, and H. R. Karimi,“Output-feedback-based H∞ control for vehicle suspension systems with control delay,” IEEE Trans.Ind. Electron., vol. 61, no. 1, pp. 436–446, Jan. 2014.
[16]	C. Han and D. Zhao, “Multi-objective Static Output Feedback Control for Vehicle Active Suspension”,Proceedings of 2014 IEEE International Conference on Mechatronics and Automation, pp. 1526–1532, Aug. 2014.
[17]	W. Sun, H. Gao, and O. Kaynak, “Finite frequency H∞  control for vehicle active suspension systems,” IEEE Trans. Control Syst. Technol., vol. 19, no. 2, pp. 416–422, Mar. 2011.
[18]	T. Iwasaki and S. Hara, “Generalized KYP lemma: Unified frequency domain inequailities with design applications,” IEEE Trans. Autom. Control, vol. 50, no. 1, pp. 41–59, Jan. 2005.
[19]	C. E. de Souza and U. Shaked, “An LMI Method for Output-feedback Control Design for System with Real Parameter Uncertainty”, in Proc. IEEE Conf. Decision and Control, Tampa, Florida USA, pp. 1777-1779, 1998.
[20]	P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox For Use with Matlab, The Math Works Inc., Natick, MA, 1995.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信