淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2706201217383900
中文論文名稱 有關Opial 以及Hermite-Hadamard不等式的推廣與應用
英文論文名稱 Some Generalizations of Opial’s Inequality, Hermite-Hadamard’s Inequality and applications
校院名稱 淡江大學
系所名稱(中) 數學學系博士班
系所名稱(英) Department of Mathematics
學年度 100
學期 2
出版年 101
研究生中文姓名 羅仁傑
研究生英文姓名 Jen-Chieh Lo
學號 898190011
學位類別 博士
語文別 中文
口試日期 2012-06-15
論文頁數 80頁
口試委員 指導教授-楊國勝
委員-胡德軍
委員-劉豐哲
委員-高金美
委員-張慧京
委員-李武炎
委員-曾貴麟
委員-陳功宇
中文關鍵字 Opial不等式  時間尺度  赫米提-阿達瑪不等式  凸向函數 
英文關鍵字 Opial’s inequality  Time scales  Hermite-Hadamard’s inequality  Convex function 
學科別分類
中文摘要 本篇論文共分為四章。第一章中,我們探討Opial所提出的不等式。因為Opial不等式有連續型跟離散型的情形,所以我們希望透過時間尺度(time scales)的觀念將二者結合。
第二章中我們提出了一些Opial不等式在時間尺度上的一些推廣。
第三章中,我們探討赫米提-阿達瑪(Hermite-Hadamard)與費伊爾(Fejer)所提出的不等式。之後並談論一些有關阿達瑪與費伊爾不等式的改善。
最後在第四章中,我們將談論在第三章結果的應用,分別為特殊平均數、隨機變數與加權梯形公式。
英文摘要 In this dissertation, it consists of four chapters. In the first chapter, we introduce Opial’s inequality.Since there are continuous type and discrete type of Opial inequality, so we hope to combine of both by concept of time scales.
In the second chapter, we have some improvement of Opial’s inequalities on time scales.
In the third chapter, we introduce Hermite-Hadamard and Fejer inequality.
Finally, we discuss its applications to some special means, the weighted trapezoidal formula, r-moment, and the expectation of a symmetric and continuous random variable.
論文目次 目錄
第一章 簡介----------------------------------------1
1.1 Opial不等式的介紹------------------------------1
1.2有關連續型Opial不等式的推廣-----------------------1
1.3有關離散型Opial不等式的推廣-----------------------3
1.4有關時間尺度(Time scales)的簡介------------------4
1.5一些在時間尺度上Opial不等式的推廣------------------7
第二章 一些在時間尺度上Opial不等式的改良--------------8
2.1一些在時間尺度上Opial不等式的改良------------------8
2.2一些在時間尺度上Maroni不等式的改良----------------15
第三章 阿達瑪(Hadamard)不等式的介紹-----------------21
3.1 阿達瑪(Hadamard)不等式------------------------21
3.2 一些有關於阿達瑪(Hadamard)不等式的細分-----------22
3.3一些阿達瑪不等式的推廣---------------------------23
第四章 應用---------------------------------------32
參考文獻------------------------------------------36

contents
Chapter 1 Introduction---------------------------40
1.1The Introduction of Opial's Inequalities------40
1.2 Some generalizations of Opial's Inequality in Continuous
type---------------------------------------------40
1.3 Some generalization of Opial's Inequality in Discrete
type---------------------------------------------42
1.4 The Introduction of Time scales--------------43
1.5 Some generalizations of Opial's inequalities on time
scales-------------------------------------------46
Chapter 2 Some improvement of Opial's inequalities on time
scales-------------------------------------------48
2.1 Some improvement of Opial's inequalities on time scales-----48
2.2 Some improvements of Maroni's inequalities on time scales-55
Chapter 3 Introductions of Hadamard's inequalities-62
3.1 Hadamard’s inequality--------------------------62
3.2 Some refinements of Hadamard’s inequality------63
3.3 Some generalizations of Hadamard's inequalities--------------63
Chapter 4 Applications----------------------------73
References-----------------------------------------77
參考文獻 參考文獻
[1] R. P. Agarwal, Sharp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J. (Ser. 2) 47 (1995), 567--593.
[2] R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 4 (2001), 535--557.
[3] R. P. Agarwal and P. Y. H. Pang, Remarks on the generalizations of Opial's inequality, J. Math. Anal. Appl. 190 (1995), 559--577.
[4] R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Series on Mathematics and Its Applications, Vol. 320, Kluwer Academic Publishers, Dordrecht, 1995.
[5] H. Alzer. A note on Hadamard’s inequalities, C. R. Math. Rep. Acad Sci. Canada, 11(1989), 255-258.
[6] N. S. Barnett, S. S. Dragomir and C. E. M. Pearce, A quasi-trapezoid inequality for double integrals, Anziam J. 44(2003) 355-364.
[7] P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470--475.
[8] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
[9] M. Bohner and A. Peterson (Editors), Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
[10] J. L. Brenner and H. Alzer, Integral Inequalities for Concave Functions with Applications to special functions, Proc. Roy. Soc. 2 Edinburgh A, 118 (1991), 173-192.
[11] P. S. Bullen, D. S. Mitrinovic and P. M. Vasic (Eds), Means and Their Inequalities, D. Reidel Publishing Company, 1988.
[12] J.Calvert, Some generations of Opial's inequality, Proc. Amer. Math. Soc., 18 (1967),72-75.
[13] P. Cerone, S. S. Dragomir and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2000)147-163.
[14] K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc. 20 (1969), 258--261.
[15] S.S. Dragomir and R.P. Agarwal, Two new mappings associated with Hadamard’s inequalities for convex functions, Appl. Math. Lett., 11 (1998), No. 3, 33-38.
[16] S. S. Dragomir, C. E. M. Pearce and J. E. Pečarić, On Jessen’s and related inequalities for isotonic sublinear functionals, Acta Math. Sci. (Szeged), 61 (1995), 373-382.
[17] S.S. Dragomir, J. E. Pečarić and J. Sandor, A note on the Jensen-Hadamard inequality, L. Anal Num Theor L Approx, 19(1990) 29-34.
[18] L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss, 24(1906), 369-390.
[19] J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par Riemann, J. Math. Pures Appl., 58(1893), 171-215.
[20] X. G. He, A short proof of a generalization on Opial's inequality, J. Math. Anal. Appl. 182 (1994), 299--300.
[21] L.K.Hua, On an inequality of Opial, Scicetia Sinica 14(1965), 789-790.
[22] S. S. Kragujevac, Two refinements of Hadamards’s inequalities, Coll. Sci. Pap. Fac. Sci. Kragujevac, 11 (1990) 23-26.
[23] A.Lasota, A discrete boundary value problem, Ann. Polon. Math. 20(1968), 183-190.
[24] C. L. Mallows, An even simpler proof of Opial's inequality, Proc. Amer. Math. Soc. 16 (1965), 173--173.
[25] P. Maroni, Sur l'inegalite d'Opial-Bessack, C.R.Acad. Sci. Paris Ser. A-B, 264(1967), A62-A64.
[26] D. S. Mitrinovic I. B Lackovic, Hermite and convexity, Acquations Math. 28(1985) 225-232.
[27] C. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61--63.
[28] Z. Opial, Sur une inegalite, Ann. Polon. Math. 8 (1960), 29-32.
[29] B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl. 120 (1986), 547--556.
[30] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett. 13(2), 51-55,(2000).
[31] J. E. Pečarić, An integral inequality, in Analysis, Geometry and Groups: A Riemann Legacy Volume (H. M. Srivastava and Th. M. Rassias, Editors), Part II, pp. 471--478, Hadronic Press, Palm Harbor, Florida, 1993.
[32] Th. M. Rassias and H. M. Srivastava (Editors), Analytic and Geometric Inequalities and Applications, Series on Mathematics and Its Applications, Vol. 478, Kluwer Academic Publishers, Dordrecht, 1999.
[33] H.M.Srivastava, K.L.Tseng, S.J.Tseng and J.C.Lo, Some weighted Opial's inequalities on time scales, Taiwanese J. Math., 14(2010),107-122.
[34] H.M.Srivastava, K.L.Tseng, S.J.Tseng and J.C.Lo, Some generations of Maroni's inequality on time scales, Math. Ineq. and Appl., 14(2)(2011), 469-480.
[35] K.L.Tseng, S.R.Huang, G.S.Yang and J.C.Lo, Two inequalities for differentiable mappings and applications to weighted trapezoidal formula, weighted midpoint formula and random variable, Math. and Comp. Modelling, 53(2011), 179-188.
[36] D. Willett, The existence-uniqueness theorem for an nth order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174--178.
[37] F.-H. Wong, W.-C. Lian, S.-L. Yu and C.-C. Yeh, Some generalizations of Opial's inequalities on time scales, Taiwanese J. Math. 12 (2008), 463--471.
[38] J.S.W. Wong, Adiscrete analog neravenstva Bisaka I Dasa, Uc. Zap. Mosk. Gos. Ped. In-ta. Im. Lenina, 460(1972), 52-57.
[39] G.-S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78--83.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信