淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2706201210553300
中文論文名稱 切線進料之管式膜過濾研究
英文論文名稱 A Study of Tubular Membrane Filtration with Tangential Feed
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 洪嘉澤
研究生英文姓名 Jia-Tze Hung
學號 699400676
學位類別 碩士
語文別 中文
口試日期 2012-06-12
論文頁數 107頁
口試委員 指導教授-吳容銘
委員-郭修伯
委員-陳錫仁
委員-黃國楨
委員-鄭東文
委員-蔡子萱
中文關鍵字 管式膜過濾  切線進料  結垢  掃流過濾 
英文關鍵字 tubular-membrane filtration  tangent feed  fouling  cross-flow filtration 
學科別分類
中文摘要 目前所知之管式膜模組多半將膜束置於一管殼內,以致該管殼內之流道空間相對狹小,然後藉由高壓差方式將待過濾溶液輸入管殼內,且進口方式乃從管殼中間進入,造成不必要之動量損失。
本研究於管式膜過濾模組中將進料口方式改為與管殼切線方向進入,並將管殼空間變大,使得進料溶液不會因碰撞到膜管而產生不必要之紊流以及動量損失,降低壓差節省能源。此外,企圖改變流場中的流力狀態、增加膜面上的剪應力,使膜阻力降低進而提升濾速。實驗方面,採用平均孔徑為0.8um的複合陶瓷膜,過濾平均粒徑為30~40um的馬鈴薯澱粉聚粉體,探討以不同過濾壓力、不同懸浮液濃度、不同體積流率以及相同進料速度下之操作條件,比較管式膜過濾基本系統和切線系統之效率。
英文摘要 Presently, we know that tubular membrane modules are set up a inner of pipe, so space of channel is narrow relatively at inner of pipe that suspension was used to high pressure transport to inner of pipe, furthermore, suspension was conveyed from medium of pipe shell, therefore, the inner-in way would cause needless momentum losses.In the study, we made suspensions inner-in way to improve on tangent feed way from outside of pipe shell on tubular membrane filtration module, besides, made channel of pipe shell to be wide so that feed suspension was unable to contact tubular membrane to product turbulences and momentum losses, moreover, reduced transmembrane pressure and economized power. Aside from, we attempted to alter fluid state at the system of filtration and increased sheer-strss on membrane then decrease the resistance and promoted the filtration rate. This experiment used a made of Zirconia filter membrane with a mean pore size of 0.8um was used to filter Potato Starch particles of 30um to 40um and we compared with basic system and tangent system of tubular membrane filtration efficiencies by different operating conditions from transmembrane pressure, suspension concentration, volume flow rate and uniform feed velocity.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖表目錄 VI
符號說明 X
第一章 緒論 1
1.1 前言 1
1.2 薄膜過濾 2
1.3 薄膜過濾之方式 7
1.4 研究動機與目的 9
第二章 文獻回顧 10
2.1 掃流過濾 12
2.2 影響濾速之原因 16
2.3 濾速提高之方法 17
2.4 掃流過濾濾速分析 19
2.5 結垢現象 20
2.6 濃度極化 21
2.7 減緩結垢阻塞之策略 23
第三章 理論基礎 25
3.1 阻力串連分析 25
3.2 阻塞分析 28
第四章 實驗裝置與步驟 32
4.1 實驗物料 32
4.2 濾材 33
4.3 實驗裝置 34
4.3.1 管式膜過濾模組基本構造 34
4.3.2 切線進料口之管式膜過濾構造 38
4.4 實驗分析儀器 41
4.5 實驗步驟 41
4.6 實驗操作條件 42
4.7 薄膜之清洗 43
4.8 注意事項 44
第五章 結果與討論 45
5.1 管式膜過濾基本系統 45
5.1.1 過濾壓差對濾速之影響 45
5.1.2 體積流率對濾速之影響 50
5.1.3 懸浮液濃度對濾速之影響 53
5.2 管式膜過濾切線系統 58
5.2.1 過濾壓差對濾速之影響 58
5.2.2 體積流率對濾速之影響 63
5.2.3 懸浮液濃度對濾速之影響 66
5.3 管式膜過濾基本系統與切線系統之效率比較 71
5.3.1 不同過濾壓差之濾速比較 71
5.3.2 不同體積流率之濾速比較 76
5.3.3 不同懸浮液濃度之濾速比較 81
5.3.4 相同進料速度與不同過濾壓差操作之濾速比較 86
5.3.5 相同進料速度與不同懸浮液濃度操作之濾速比較 91
5.4 管式膜過濾系統之整體分析比較 96
第六章 結論 99
參考文獻 101

圖目錄
第一章
圖1.1 薄膜過濾示意圖 3
圖1.2 垂直過濾示意圖 8
圖1.3 掃流過濾示意圖 8
第二章
圖2.1 過濾物質大小與膜過濾之關係圖 11
圖2.2 濾速提高之方法 18
圖2.3 濃度極化分布圖 22
圖2.4 反洗操作圖 23
第三章
圖3.1 薄膜過濾阻力示意圖 26
圖3.2 阻塞模式機制示意圖 30
第四章
圖4.1 馬鈴薯澱粉粉體之SEM圖 32
圖4.2 管式膜基本裝置進流方式之示意圖 35
圖4.3 管式膜過濾基本系統拍攝圖 36
圖4.4 管式膜過濾基本系統之示意圖 37
圖4.5 管式膜切線進料裝置之進流方式示意圖 38
圖4.6 管式膜過濾切線進料系統之實際拍攝圖 39
圖4.7 管式膜過濾切線進料系統之示意圖 40
第五章
圖5.1(a)、(b)定體積流率與定懸浮液濃度過濾壓差對濾速之影響 47
圖5.2(a)、(b)不同過濾壓差下濾液量隨時間之變化情形 48
圖5.3(a)、(b)不同過濾壓差下過濾總阻力隨時間之變化情形 49
圖5.4 定過濾壓差與定懸浮液濃度體積流率對濾速之影響 52
圖5.5 不同體積流率下濾液量隨時間之變化情形 52
圖5.6 不同體積流率下過濾總阻力隨時間之變化情形 52
圖5.7(a)、(b)定體積流率與定過濾壓差懸浮液濃度對濾速之影響 55
圖5.8(a)、(b)不同懸浮液濃度下濾液量隨時間之變化情形 56
圖5.9(a)、(b)不同懸浮液濃度下過濾總阻力隨時間之變化情形 57
圖5.10(a)、(b)定體積流率與定懸浮液濃度過濾壓差對濾速之影響 60
圖5.11(a)、(b)不同過濾壓差下濾液量隨時間之變化情形 61
圖5.12(a)、(b)不同過濾壓差下過濾總阻力隨時間之變化情形 62
圖5.13 定過濾壓差與定懸浮液濃度體積流率對濾速之影響 65
圖5.14 不同體積流率下濾液量隨時間之變化情形 65
圖5.15 不同體積流率下過濾總阻力隨時間之變化情形 65
圖5.16(a)、(b)定體積流率與定過濾壓差懸浮液濃度對濾速之影響 68
圖5.17(a)、(b)不同懸浮液濃度下濾液量隨時間之變化情形 69
圖5.18(a)、(b)不同懸浮液濃度下過濾總阻力隨時間之變化情形 70
圖5.19(a)、(b)、(c)基本系統與切線系統過濾壓差對濾速之影響 73
圖5.20(a)、(b)、(c)基本系統與切線系統過濾壓差對濾液量之影響 74
圖5.21(a)、(b)、(c)基本系統與切線系統過濾壓差對總阻力之影響 75
圖5.22(a)、(b)、(c)基本系統與切線系統體積流率對濾速之影響 78
圖5.23(a)、(b)、(c)基本系統與切線系統體積流率對濾液量之影響 79
圖5.24(a)、(b)、(c)基本系統與切線系統體積流率對總阻力之影響 80
圖5.25(a)、(b)、(c)基本系統與切線系統懸浮液濃度對濾速之影響 83
圖5.26(a)、(b)、(c)基本系統與切線系統懸浮液濃度對濾液量之影響 84
圖5.27(a)、(b)、(c)基本系統與切線系統懸浮液濃度對總阻力之影響 85
圖5.28(a)、(b)、(c)基本系統與切線系統過濾壓差對濾速之影響 88
圖5.29(a)、(b)、(c)基本系統與切線系統過濾壓差對濾液量之影響 89
圖5.30(a)、(b)、(c)基本系統與切線系統過濾壓差對總阻力之影響 90
圖5.31(a)、(b)、(c)基本系統與切線系統懸浮液濃度對濾速之影響 93
圖5.32(a)、(b)、(c)基本系統與切線系統懸浮液濃度對濾液量之影響 94
圖5.33(a)、(b)、(c)基本系統與切線系統懸浮液濃度對總阻力之影響 95
圖5.34 管式膜基本系統與切線系統過濾時間600s之濾速比較 97
圖5.35 管式膜基本系統與切線系統過濾時間7200s之濾速比較 97
圖5.36 管式膜基本系統與切線系統之進料口壓力比較 98
圖5.37 管式膜基本系統與切線系統之轉速比較 98

表目錄
第一章
表1.1 各式過濾模組特性 5
表1.2 薄膜類型與特性分類 6
第二章
表2.1 薄膜程序對於分離溶質之區分表 10
表2.2 常用薄膜清洗溶劑與用途 24
第四章
表4.1 馬鈴薯澱粉之說明 33
表4.2單通道複合陶瓷膜之性質 34
參考文獻 Adham, S. S., Snoeyink, V. L., Clark, M. M., and Anselme, C., “Predicting and Verifying TOC Removal by PAC in Pilot-Scale UF System,” Journal of American Water Works Association, 85, 58-68 (1993).

Ahn, K. H., Cha, H. Y., Yeom, I. T., and Song, K. G., “Application of Nanofiltration for Recycling of Paper Regeneration Wastewater and Characterization of Filtration Resistance,” Desalination, 119, 169-176 (1998).

Aimar, P., Howell, J. A., Clifton, M. J., and Sanchez, V., “Concentration Polarization Build-up in Hollow Fiber: A Measurement and Its Modeling in Ultrafiltration,” Journal of Membrane Science, 59, 81-99 (1991).

Amar, R. B., Gupta, B. B. and Jaffrin, M. Y., “Apple juice clarification using mineral membrane : Gouling controlled by backwashing and puslatile flow,” J. Chem. Eng. Sci., 21, 197 (1990).

Bader, M. S. H., “Nanofiltration for Oil-fields Water Injection Operations: Analysis of Concentration Polarization,” Desalination, 201, 106-113 (2006).

Bauser, H., Chmiel, H., Stroh, N., and Walitza, E., “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application,” J. Membr. Sci., 27, 195-202 (1986).

Belfort, G., ”Membrane Modules : Comparison of different configurations using fluid mechanics,” J. Membr. Sci., 35, 245-270 (1988).

Belfort, G., ”Fluid mechanics in membrane filtration : Recent developments,” J. Membr. Sci., 40,123-147 (1989).

Benitez, F. J., Acero, J. L., Leal, A. I., Gonzalez, M., “The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater, ” J. Hazard. Mater., 162, 1438-1445 (2009).

Blatt, W. F., Dravid, A., Michael, A. S., and Nelson, L., “Solute Polarization and Cake Formation in Membrane Ultrafiltration: Cause, Consequences, and Control Techniques,” Membrane Science and Technology, 47, J. E. Flinn, (Ed.), Plenum Press, New York (1970).

Bourgeous, K. N., Darby, J. L., and Tchobanoglous, G., “Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness, ” Water Research, 35, 77 (2001).

Bowen, W. R., Calvo, J. I., and Hernandez, A., “Steps of Membrane Blocking in Flux Decline During Protein Microfiltration,” Journal of Membrane Science, 101, 153-165 (1995).

Chong, R., Jelen, P., and Wang, W., ”The effect of cleaning agents on a noncellulosic ultrafiltration membrane,” Sep. Sci. Technol., 20, 393-402 (1985).

Davis, R. H., and Birdsell, S. A., “Hydrodynamic Model and Experiments for Crossflow Microfiltration,” Chemical Engineering Communication, 49, 217-229 (1987).

de Barros, S. T. D., Andrade, C. M. G., Mendes, E. S., and Peres, L., “Study of fouling mechanism in pineapple juice clarification by ultrafiltration.,” Journal of Membrane Science, 215, 213-224 (2003).

Fane, A. G., Fell, C. J. D. And Suki, A., “The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes,” J. Membr. Sci., 16, 195-210 (1983).

Fell, C. J. D., Kim, K. J., Chem, V., Wiley, D. E., And Fane, A. G., “Factors determining flux and rejection of ultrafiltration membranes,” Chem. Eng. Process., 27, 165-173 (1990).

Fritzsche, A. K., Arevalo, A. R., Moore, M. D., Elings, V. B., Kjoller, K., and Wu, C. M., “The Surface Structure and Morphology of Polyvinylidene Fluoride Microfiltration Membranes by Atomic Force Microscopyc,” Journal of Membrane Science, 68, 65 (1992).

Garcia-Molina V, S. Esplugas, Th. Wintgens, Th. Melin, “Ultrafiltration of aqueous solutions containing dextran, ” Desalination, 188 , 217-227 (2006).

Gill, W. N., Wiley, D. E., Fell, C. J. D., and Fane, A. G., “Effect of Viscosity on Concentration Polarization in Ultrafiltration,” AIChE J., 34, 1563 (1988).

Gonder, Z. B., Kaya, Y., Vergili, I., Barlas, H., “Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach, ” Sep. Purif. Technol., 70, 265-273 (2010).

Hwang, K. J., Yu, M. C., and Lu, W. M., “ Migration and Deposition of Submicron Particles in Crossflow Microfiltration,” Separation Science and Technology, 32, 2723-2747 (1997).

Iritani, E., Mukai, Y., Tanaka, Y., and Murase, T., “Flux decline behavior in dead-end microfiltration of protein solution,” Journal of Membrane Science, 103, 181 (1995).

Jaffrin, M. Y., “Dynamic shear-enhanced membrane filtration : a review of rotating disks rotating membranes and vibrating systems,” Journal of Membrane Science, 324, 7-25 (2008).

Jiraratananon, R., Uttapap, D., and Sampranpiboon, P., “Crossflow microfiltration of a colloidal suspension with the presence of macromolecules,” Journal of Membrane Science, 140, 57-66 (1998).

Kang, S. K., and Choo, K. H., “Use of MF and UF Membrane for Reclamation of Glass Industry Wastewater Containing Colloidal Clay and Glass Particles,” Journal of Membrane Science, 223, 89-103 (2003).

Kim, K. J., Chen, V., and Fane, A. G., “Some Factors Determining Protein Aggregation during Ultration,” Biotechnology and Bioengineering, 42, 260 (1993).

Kim, B. S. and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance,” Bioseparation, 2, 9-23 (1991).

Koh, C. N., Wingtgens, T., Melin, T., Pronk, F., “Microfiltration with silicon nitride microsieves and high frequency backpulsing, ” Desalination, 224, 88-97 (2008).

Kuberkar, V. T., and Davis, R. H., “Microfiltration of Protein-cell Mixtures with Crossflushing or Backflushing,” Journal of Membrane Science, 183, 1-14 (2001).

Kyllonen, H. M., Pirkonen, P., Nystrom, M., “Membrane filtration enhanced by ultrasound : a review,” Desalination, 181, 319 (2005).

Kyllonen, H. M., Pirkonen, P., Nystrom, M., “Membrane filtration enhanced by ultrasound : a review,” Desalination, 181, 319-335 (2005).

Liu Charles, Scott Caothien, Jennifer Hayes, Tom Caothuy, “Membrane Chemical Cleaning: From Art to Science,” Scientific and Laboratory Services, Pall Corporation (2008).

Liu, Y., He, G., Liu, X., Xiao, G., Li, B., “CFD simulations of turbulent flow in baffle-filled membrane tubes, ” Sep. Purif. Technol. J., 67, 14-20 (2009).

Lobo, A., Cambiella, A., Benito, J. M., Pazos, C., and Coca, J., “Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity, ” Journal of Membrane Science, 278, 328-334 (2006).

Lu, W. M., and Ju, S. C., “Selctive Particle Deposition in Cross-Flow Filtration,” Separation Science and Technology, 24, 517-540 (1989).

Luo J. Q., Wei, S. P., Su, Y., Chen, X. R., Wan, Y. H., “Desalination and recovery of iminodiacetic acid (IDA) from its sodium chloride mixtures by nanofiltration, ” J. Membr. Sci., 342, 35-41(2009).

Ma, H., Bowman, C. N., and Davis, R. H., “Membrane Fouling Reduction by Backpulsing and Surface Modification,” Journal of Membrane Science, 173, 191-200 (2000).

Metcalf & Eddy, Inc., “Wastewater Engineering: Treatment and Reuse,” 4th ed., McGraw Hill, Boston (2003).

Morel, G., Gracina, A. and Lachise, J., “Enhanced nitrate ultrafiltration by cationic surfactant,” J. Membr. Sci., 56, 1-12 (1991).

Mulder, M., “Basic Principles of Membrane Technology,” Kluwer Academic Publisher, 309, (1991).

Nabetani, H., Nakajima, M., Watanabe, A., Nakao, S. and Kimura, S., “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin,” AIChE J., 36, 907-915 (1990).

Nel, R. G., Oppenheim, S. F., and Rodgers, V. G. J., “Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration,” Biotechnol. Prog., 10, 539-42 (1994).

Pal, S., Bharihoke, R., Chakraborty, S., Ghatak, S. K., De, S., Gupta, S. D., “An experimental and theoretical analysis of turbulence promoter assisted ultrafiltration of synthetic fruit juice,” Sep. Purif. Technol J., 62, 659-667 (2008).

Pihlajamaki, A., Vaisanen, P., and Nystrom, M., “Characterization of Clean and Fouled Polymeric Ultration Membranes by Fourier Transform IR Spectroscopy-attenuated Total Reflection,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138, 323 (1998).

Pirbazari, M., Badriyha, B. N., and Ravindran, V., “MF-PAC for Treating Water Contanibated with Natural and Synthetic Organics,” Journal / American Water Works Association, 83, 61-68 (1992).

Riesmeier, B., Kroner, K. H. and Kula, M. R., “Tangential filtration of microbial suspensions : resistance and model development,” J Biotechnol, 12, 153 (1989).

Rodgers, V. G. J., and Sparks, R. E., “Reduction of Membrane Fouling in Protein Ultrafiltration,” AIChE Journal, 37, 1517-1528 (1991).

Schulz, G., and Ripperger, S., “Concentration Polarization in Crossflow Mircofiltration,” Journal of Membrane Science, 40, 173-184 (1989)

Schwingea, J., Wiley, D. E., Fane, A. G., and Guenther, R., “ Characterization of a Zigzag Spacer for Ultrafiltration,” Journal of Membrane Science, 172, 19-31 (2000).

Su, T. J., Lu, J. R., Cui, Z. F., Bellhouse, B. J., Thomas, R. K., and Heenan, R. K., “Idenification of the Location of Protein Fouling on Ceramic Membrane under Dynamic Filtration Condition,” Journal of Membrane Science, 163, 265 (1999).

Sutherland, K., “Profile of the International Membrane Industry,” 2nd ed., Elsevier, Amsterdam (2000).

Tansel, B., Bao, W. Y., and Tansel., “IN Characterization of fouling kinetics in ultrafiltration systems by resistances in series model,” Desalination, 129, 7 (2000).

Tiller, F. M., “Theory and Practice of Solid-liquid Separation,” Univ. of Houston, Houston, TX, U.S.A. (1975).

Vigneswaran, S., and Wong, Y. K., “Detailed Investigation of Effects of Operating Parameters of Ultrafiltration Using Laboratiry-scale ultrafiltration unit,” Desalination, 70, 299-316 (1988).

Vyas, H. K., Bennett, R. J., and Marshall, A. D., “Influence of feed properties on the membrane fouling in crossflow microfiltration of particulate suspensions,” International Dairy Journal, 10, 855-864 (2000).

Wakeman, R. J., and Tarleton, E. S., “Understanding Flux Delcline in Crossflow Microfiltration: Part I-Effect of Particle and Pore Size,” Transactions of the Institution of Chemical Engineers, 71, Part A, p.399-410 (1993).

Wakeman, R. J., and Tarleton, E. S., “Understanding Flux Delcline in Crossflow Microfiltration: Part II-Effect of Process and Parameter,” Transactions of the Institution of Chemical Engineers, 72, Part A, p.431-440 (1994).

Weigert, T., Altmann, J., and, Ripperger, S., “Crossflow Electrofiltration in Pilot Scale,” Journal of Membrane Science, 159, 253-262 (1999).

Winzeler, H. B., and Belfort, G., “Enhanced performance for pressure-driven membrane processes : The argument for fluid instabilities,” J. Membrane Sci., 80, 35 (1993).

Xu, N., Zhong, Y., and Shi, J., “Crossflow Microfiltration of Micro-Sized Mineral Suspension Using Ceramic Membranes,” Chemical Engineering Research and Design, 80, 215-221 (2002).

Zydney, A. L., and Colton, C. K., “A Concentration Polarization Model for the Filtrate Flux in Crossflow Microfiltration of Particulate Suspensions,” Chemical Engineering Communication, 47, 1-21 (1986).

呂維明、呂文芳,“過濾技術”,高立圖書有限公司,(1994)

呂維明,“固液過濾技術”,高立圖書有限公司,(2004)

蕭瑞昌,“利用水溶性幾丁聚醣以薄膜過濾法去除微量之金屬離子”,碩士論文,元智大學化學工程學系,(1997)

楊叢印,“結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究”,碩士論文,國立中山大學環境工程學系,(2003)

潘玉敏,“微粒子懸浮液掃流薄膜過濾之探討”,碩士論文,淡江大學化學工程與材料工程學系,(2007)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信