淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2706201112265700
中文論文名稱 允許延遲付款下品質有瑕疵及檢驗錯誤之貨品的最適訂購策略的研究
英文論文名稱 A study of optimal ordering policy for items with imperfect quality and inspection errors under permissible delay in payments
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 99
學期 2
出版年 100
研究生中文姓名 宋柏毅
研究生英文姓名 Pao-Yi Soong
學號 698650149
學位類別 碩士
語文別 中文
口試日期 2011-06-08
論文頁數 96頁
口試委員 指導教授-張春桃
委員-歐陽良裕
委員-鄭美娟
中文關鍵字 存貨  經濟訂購量  延遲付款  瑕疵品  檢驗錯誤 
英文關鍵字 Inventory  Economic Order Quantity  Permissible Delay in Payments  Imperfect Quality Items  Inspection Errors 
學科別分類 學科別自然科學統計
中文摘要 存貨管理是一個企業成敗的重要關鍵之一,許多企業都希望擬定一個最適
訂購策略來達成最大的利潤賺得。在傳統的經濟訂購量模型假設零售商收到貨
品的同時必須付清貨款。而在實務上,供應商為了激勵零售商的訂購量,往往
會提供一段延遲付款時間給予零售商;對於零售商而言,不必負擔大量的資金
積壓,還可利用已銷售的收入去賺得利息。其次,傳統的經濟訂購量模型並沒
有將進貨物品中品質有瑕疵的情況納入考慮,這些瑕疵品非但不能賺取利潤,
反而會造成額外的成本支出。另外,檢驗貨品的過程中,可能會因為人為、技
術或環境等因素造成貨品檢驗錯誤,產生額外的處理成本以及利潤損失。這些
狀況均存在於現實的存貨管理中,也是決策者需面對及解決的問題,亦是值得
探討的議題。針對零售商的存貨管理問題,本論文將在存貨模型中,加入延遲
付款、貨品品質有瑕疵與檢驗錯誤等議題,探討這些議題對存貨管理的影響;
同時提出零售商在面對不同情況下,使得每年總利潤為最大的最適訂購策略。
本論文研究兩個存貨模型,文中包含四個章節。第一章為緒論,包括研究
動機與目的、相關文獻探討及本文結構。第二章探討當供應商允許延遲付款且
貨品品質有瑕疵的情況下,零售商的最適訂購策略。第三章除延續第二章的概
念外,將檢驗錯誤的議題納入存貨模型中,研究檢驗錯誤對訂購策略之決定的
影響。針對兩模型分別找出最適解,並運用數值範例來說明模型的求解與應用
以及敏感度分析。最後,第四章提出本研究的結論和未來的研究方向。
英文摘要 In the traditional economic order quantity (EOQ) model, it is tacitly assumes that
a retailer must pay for the items as soon as the items are received, and all items
offered by a supplier are perfect quality items. However, in real business transactions,
it is a common situation that a retailer receives some imperfect quality items from a
lot, and additional costs are occurred by these imperfect quality items. In addition, a
supplier may provide a permissible delay in payments to a retailer in order to
encourage the retailer to increase order quantities. During the trade credit period, the
account is not settled, and generated sales revenue is deposited in an interest bearing
account. Moreover, the inspection errors due to the mistakes by human, techniques of
inspection or environment are incurred and the penalty costs occur. In this thesis, a
permissible delay in payments, defective items and inspection errors are taken into
account when the optimal ordering policy is determined for maximizing retailer’s
total profit.
This thesis proposes two inventory mathematical models for the inventory
system under trade credit. In chapter 2, we formulate an EOQ model with imperfect
quality items when the supplier provides a permissible delay in payments. In chapter 3, we discuss an EOQ model with imperfect quality items and inspection errors when
the supplier offers a permissible delay in payments. For each model, some theorems
are established to find the optimal ordering policy, numerical examples are given to
illustrate the solution procedure and sensitivity analysis is reported. Finally, chapter 4
provides the conclusions of this thesis and topics for future research.
論文目次 目錄

表目錄 III
圖目錄 IV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻探討 3
1.2.1 延遲付款 3
1.2.2 品質有瑕疵 5
1.2.3 檢驗錯誤 7
1.3 本文結構 8
第二章 延遲付款下品質有瑕疵之貨品的最適訂購策略 9
2.1 前言 9
2.2 符號與假設 11
2.3 模型的建立 13
2.4 模型的求解 22
2.5 最佳解的決定 30
2.6 數值範例與敏感度分析 32
2.7 小結 39

第三章 延遲付款下品質有瑕疵及檢驗錯誤之貨品
的最適訂購策略 40
3.1 前言 40
3.2 符號與假設 41
3.3 模型的建立 43
3.4 模型的求解 55
3.5 最佳解的決定 67
3.6 數值範例與敏感度分析 72
3.7 小結 81
第四章 結論 83
4.1 主要研究成果 83
4.2 未來研究方向 85
附錄 87
附錄一. 87
附錄二. 89
參考文獻 91

表目錄
表2-1:M變動下,最佳解的數值結果 33
表2-2:Ip變動下,最佳解的數值結果 34
表2-3:Ie變動下,最佳解的數值結果 35
表2-4:p變動下,最佳解的數值結果 36
表2-5:K變動下,最佳解的數值結果 37
表2-6:h變動下,最佳解的數值結果 38
表3-1:M變動下,最佳解的數值結果 73
表3-2:Ip變動下,最佳解的數值結果 75
表3-3:Ie變動下,最佳解的數值結果 76
表3-4:p變動下,最佳解的數值結果 77
表3-5:K變動下,最佳解的數值結果 78
表3-6:h變動下,最佳解的數值結果 78
表3-7:p1變動下,最佳解的數值結果 79
表3-8:p2變動下,最佳解的數值結果 80

圖目錄
圖2-1:Salameh and Jaber (2000) 之存貨系統 14
圖2-2:M≦t1≦T時之存貨水準、利息賺得及利息支付示意圖 15
圖2-3:t1≦M≦T時之存貨水準、利息賺得及利息支付示意圖 17
圖2-4:t1≦T≦M時之存貨水準及利息賺得示意圖 19
圖3-1:Khan et al. (2011) 之存貨系統 45
圖3-2:M≦t1≦T時之存貨水準、利息賺得及利息支付示意圖 46
圖3-3:t1≦M≦T時之存貨水準、利息賺得及利息支付示意圖 48
圖3-4:T≦M≦T+t1時之存貨水準及利息賺得示意圖 50
圖3-5:T+t1≦M時之存貨水準及利息賺得示意圖 52
參考文獻 參考文獻
中文部分:
張保隆、陳文賢、蔣明晃、姜齊、盧昆宏、王瑞探、黃明官 (2006)。生產管理。三版,台北市:華泰文化事業股份有限公司。


英文部分:
[1] Aggarwal, S. P. and Jaggi, C. K. (1995). Ordering policies of deteriorating items
under permissible delay in payments. Journal of the Operational Research
Society, 46(5), 658-662.

[2] Chang, C. T., Ouyang, L. Y. and Teng, J. T. (2003). An EOQ model for
deteriorating items under supplier credits linked to ordering quantity. Applied
Mathematical Modelling, 27(12), 983-996.

[3] Chang, H. C. (2004). An application of fuzzy sets theory to the EOQ model with
imperfect quality items. Computers and Operations Research, 31(12),
2079-2092.

[4] Chang, H. J. and Dye, C.Y. (2001). An Inventory model for deteriorating items
with partial backlogging and permissible delay in payments. International
Journal of Systems Science, 32(3), 345-352.

[5] Chen, L. H. and Ouyang, L.Y. (2006). Fuzzy inventory model for deteriorating
items with permissible delay in payment. Applied Mathematics and
Computation, 182(1), 711-726.

[6] Chiu,Y. P. (2003). Determining the optimal lot size for the finite production
model with random defective rate, the rework process and backlogging.
Engineering Optimization, 35(4), 427-437.

[7] Chung, K. J., Goyal, S. K. and Huang, Y. F. (2005). The optimal inventory
policies under permissible delay in payments depending on the ordering quantity.
International Journal of Production Economics, 95(2), 203-213.

[8] Chung, K. J., Her, C. C. and Lin, S. D. (2009). A two-warehouse inventory
model with imperfect quality production processes. Computers and Industrial
Engineering, 56(1), 193-197.

[9] Chung, K. L. and Hou, K. L. (2003). An optimal production run time with
imperfect production process and allowable shortages. Computers and
Operations Resarch, 30(4), 483-490.

[10] Duffuaa, S. O. and Khan, M. (2002). An optimal repeat inspection plan with
several classifications. Journal of the Operational Research Society, 53(9),
1016-1026.

[11] Duffuaa, S. O. and Khan, M. (2005). Impact of inspection errors on the
performance measures of a general repeat inspection plan. International Journal
of Production Research, 43(23), 4945-4967.

[12] Goyal, S. K. (1985). Economic order quantity under conditions of permissible
delay in payments. Journal of the Operational Research Society, 36(4), 335-338.

[13] Goyal, S. K. and Cárdenas-Barrón, L. E. (2002). Note on: Economic production
quantity model for items with imperfect quality – a practical approach.
International Journal of Production Economics, 77(1), 85-87.

[14] Goyal, S. K., Huang, C. K. and Chen, K. C. (2003). A simple integrated
production policy of an imperfect item for vendor and buyer. Production
Planning and Control, 14(7), 596-602.

[15] Haji, A., Sikari, S. S. snd Shamsi, R. (2010). The effect of inspection errors on
the optimal batch size in reworkable production systems with scraps.
International Journal of Product Development, 10(1-3), 201-216.

[16] Harris, F. W. (1913). How many parts to make at once. Factory, The Magazine
of Management, 10(2), 135-136.

[17] Ho, C. H., Ouyang, L.Y. and Su, C. H. (2008). Optimal pricing, shipment and
payment policy for an integrated supplier-buyer inventory model with two-part
trade credit. European Journal of Operational Research, 187(2), 496-510.

[18] Hou, K. L. (2005). Optimal production run length for deteriorationg production
system with a two-state continuous-time Markovian processes under allowable
shortage. Journal of the Operational Research Society, 56(3), 346-350.

[19] Huang, C. K. (2004). An optimal policy for a single-vendor single-buyer
integrated production-inventory problem with process unreliability
consideration. International Journal of Production Economics, 91(1), 91-98.

[20] Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under
trade credit financing. Journal of the Operational Research Society, 54(9),
1011-1015.

[21] Huang, Y. F. (2007). Economic order quantity under conditionally permissible
delay in payments. European Journal of Operational Research, 176(2), 911-924.

[22] Hwang, H. and Shinn, S. W. (1997). Retailer’s pricing and lot sizing policy for
exponentially deteriorating products under the condition of permissible delay in
payments. Computers and Operations Research, 24(6), 539-547.

[23] Jaber, M. Y., Bonney, M. and Moualek, I. (2009). An economic order quantity
model for an imperfect production process with entropy cost. International
Journal of Production Ecoomics, 118(1), 26-33.

[24] Jaber, M.Y., Goyal, S. K. and Imran, M. (2008). Economic production quantity
model for items with imperfect quality subject to learning effects. International
Journal of Production Economics, 115(1), 143-150.

[25] Jamal, A. M. M., Sarker, B. R. and Wang, S. (1997). An ordering policy for
deteriorating items with allowable shortage and permissible delay in payment.
Journal of the Operational Research Society, 48(8), 826-833.

[26] Khan, M., Jaber, M. Y. and Bonney, M. (2011). An economic order quantity
(EOQ) for items with imperfect quality and inspection errors. International
Journal of Production Economics, 133(1), 113-118.

[27] Khan, M., Jaber, M. Y. and Wahab, M. I. M. (2010). Economic order quantity
model for items with imperfect quality with learning in inspection. International
Journal of Production Economics, 124(1), 87-96.
[28] Kök, A. G. and Shang, K. H. (2007). Inspection and replenishment policies for
systems with inventory record inaccuracy. Manufacturing & Service Operations
Management, 9(2), 185-205.

[29] Liao, G. L. (2007). Optimal production correction and maintenance policy for
imperfect process. European Journal of Operational Research, 182(3),
1140–1149.

[30] Liao, J. J. (2007). On an EPQ model for deteriorating items under permissible
delay in payments. Applied Mathematical Modelling, 31(3), 393-403.

[31] Lin, T. Y. (2010). An economic order quantity with imperfect quality and
quantity discounts. Applied Mathematical Modelling, 34(10), 3158-3165.

[32] Lin, T. Y. and Chen, M. T. (2011). An economic order quantity model with
screening errors, returned cost, and shortages under quantity discounts. African
Journal of Business Management, 5(4), 1129-1135.

[33] Maddah, B. and Jaber, M. Y. (2008). Economic order quantity for items with
imperfect quality: Revisited. International Journal of Production Economics,
112(2), 808-815.

[34] Ouyang, L. Y., Chang, C. T. and Shum, P. (2011). The EOQ with defective
items and partially permissible delay in payments linked to order quantity
derived algebraically. Central European Journal of Operations Research.
DOI: 10.1007/s10100-010-0160-9.

[35] Ouyang, L. Y. and Chuang, K. W. (2004). Economic order quantity with shortage
and quantity discounts under permissible delay in payments. Journal of
Information and Optimization Sciences, 25(1), 53-61.

[36] Ouyang, L. Y., Teng, J. T. and Chen, L. H. (2006). Optimal Ordering Policy for
Deteriorating Items with Partial Backlogging under Permissible Delay in
Payments. Journal of Global Optimization, 34(2), 245-271.

[37] Paknejad, M. J., Nasri, F. and Affisco, J.F. (1995). Defective units in a
continuous review (s,Q) system. International Journal of Production Research,
33(10), 2767-2777.
[38] Papachristos, S. and Konstantaras, I. (2006). Economic ordering quantity models
for items with imperfect quality. International Journal of Production Economics,
100(1), 148-154.

[39] Porteus, E. L. (1986). Optimal lot sizing, process quality improvement and setup
cost reduction. Operations Research, 34(1), 137-144.

[40] Rahim, M. A. and Al-Hajailan, W. I. (2006). An optimal production run for an
imperfect production process with allowable shortages and time-var-ying
fraction defective rate. International Journal of Advanced Manufacturing
Technology, 27(11-12), 1170-1177.

[41] Raouf, A., Jain, J. K. and Sathe, P. T. (1983). A cost-minimization model for
multicharacteristic component inspection. IIE Transactions, 15(3), 187-194.

[42] Salameh, M. K. and Jaber, M. Y. (2000). Economic production quantity model
for items with imperfect quality. International Journal of Production Economics,
64(1), 59-64

[43] Sarker, B. R., Jammal, A. M. M. and Wang, S. (2000). Supply chain models for
perishable products under inflation and permissible delay in payment. Computers
and Operations Research, 27(1), 59-75.

[44] Schwaller, R. L. (1988). EOQ under inspection costs. Production and Inventory
Management Journal, 29(3), 22-24.

[45] Shah, V. R., Patel, N. C. and Shah, D. K. (1988). Economic ordering quantity
when delay in payments of order and shortages are permitted. Gujarat Statistical
Review, 15(2), 52-56.

[46] Teng, J. T. (2002). On the economic order quantity under conditions of
permissible delay in payments. Journal of the Operational Research Society,
53(8), 915-918.

[47] Teng, J. T. (2009). Optimal ordering policies for a retailer who offers distinct
trade credits to its good and bad credit customers. International Journal of
Production Economics, 119(2), 415-423.

[48] Teng, J. T., Chang, C. T. and Goyal, S. K. (2005). Optimal pricing and ordering
policy under permissible delay in payments. International Journal of Production
Economics, 97(2), 121-129.

[49] Tripathi, R. P., Misra, S. S. and Shukla, H. S. (2010). A cash flow oriented EOQ
model under permissible delay in payments. International Journal of
Engineering, Science and Technology, 2(11), 123-131.

[50] Wu, K. S. and Ouyang, L. Y. (2001). (Q, r, L) inventory model with defective
items. Computers and Industrial Engineering, 39(1-2), 173-185.

[51] Yoo, S. H., Kim, D. S. and Park, M. S. (2009). Economic production quantity
model with imperfect-quality items, two-way imperfect inspection and sales
return. International Journal of Production Economics, 121(1), 255-265.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信