淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2706200809114400
中文論文名稱 利用D2EHPA改質活性碳去除水中重金屬鎘之研究
英文論文名稱 Cadmium removal by D2EHPA-impregnated granular activated carbon
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 吳惠菁
研究生英文姓名 Hui-Ching Wu
學號 695480227
學位類別 碩士
語文別 中文
口試日期 2008-06-13
論文頁數 70頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-李柏青
中文關鍵字 改質  活性碳  D2EHPA  吸附   
英文關鍵字 impregnated  granular activated carbon (GAC)  D2EHPA  adsorption  cadmium 
學科別分類 學科別應用科學環境工程
中文摘要 本研究利用萃取劑D2EHPA改質粒狀活性碳(GAC),以提升活性碳吸附金屬的效率。由控制不同實驗參數找出最佳吸附效率的參數值,利用這些參數值進行動力吸附模式、等溫吸附模式模擬與管柱實驗。
批次式吸附實驗結果顯示平衡時間與最佳吸附效率的pH值分別為12小時與pH 7。動力吸附模式模擬結果顯示,改質後的活性碳(DGAC)與GAC在溫度為25℃,pH值為7的條件下,分別吸附濃度為100及200 mg/L鎘金屬溶液,以擬二階反應模式最符合,其線性回歸R2皆在0.995以上。等溫吸附模式的模擬結果顯示, Langmuir等溫吸附模式最符合,求出的DGAC和GAC最大吸附量各別為21.93與11.44 mg/g。在管柱實驗裡,DGAC無法直接使用,因為pH值是影響吸附能力的主要因素,當pH值下降,吸附效率隨即降低,所以DGAC應用在管柱前,需要先以鈉離子替換DGAC的氫離子,避免pH值下降,影響吸附效率。
最後由批次實驗與管柱測試結果,得知利用D2EHPA改質粒狀活性碳(GAC),確實可有效提升吸附金屬的能力,對鎘金屬的去除效率可提升約2倍。
英文摘要 GAC was impregnate with D2EHPA (di(2-ethylhexyl) phosphoric acid) dissolved in acetone to enhance its metal adsorption capacity for cadmium removal from aqueous solution. Batch adsorption experiments were conducted under different D2EHPA dosages, temperature, equilibrium time, and pH. According to the experiments results, the equilibrium time, optimum D2EHPA dosages, and optimum pH were found to be 12 hr, 10 g, and 7, respectively. Adsorption processes were found to follow pseudo-second order rate equation at two different initial concentrations of 100 and 200 mg/g. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of impregnated GAC for cadmium is 21.93 mg/g.
論文目次 誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VIII
表目錄 XI
第一章、前言 1
1-1 研究緣起與目的 1
1-2 研究內容 3
第二章、文獻回顧 4
2-1 吸附劑改質 4
2-1-1 強酸強鹼氧化改質法 4
2-1-2 硫化物改質法 5
2-1-3 金屬氧化改質法 6
2-1-4 萃取劑浸泡改質法 7
2-1-5 其他改質方法 8
2-2 活性碳吸附鎘金屬的機制 14
2-3 影響活性碳吸附重金屬的因子 15
2-3-1 pH 值的影響 15
2-3-2 活性碳表面面積與官能基的影響 16
2-3-3 其他金屬離子的影響 17
2-3-4 溫度的影響 17
2-4 吸附動力模式 18
2-4-1 擬一階動力吸附模式(Pseudo first-order model) 18
2-4-2 擬二階動力吸附模式(Pseudo second-order model) 19
2-5 等溫吸附模式 20
2-5-1 Langmuir等溫吸附模式 20
2-5-2 Freundlich等溫吸附模式 21
2-6 管柱吸附 23
2-7 再生 24
第三章、材料與方法 25
3-1 實驗材料與設備 25
3-1-1 實驗材料 25
3-1-2 實驗設備 28
3-2 實驗步驟 32
3-2-1 吸附測試 32
3-2-2 溶出測試 32
3-2-3 不同pH值 33
3-2-4 動力吸附實驗 33
3-2-5 等溫吸附實驗 33
3-2-6 管柱實驗 34
3-2-7 批次式再生實驗 34
3-2-8 再生與再利用實驗 34
3-3 分析方法與干擾去除 35
3-3-1 總鎘分析 35
3-3-2 TOC分析 35
3-3-3 比表面積分析 35
3-3-4 氯鹽檢測方法 36
第四章、結果與討論 37
4-1 活性碳改質 37
4-1-1 不同改質方法對吸附鎘金屬之影響 37
4-1-2 不同D2EHPA添加量對吸附鎘金屬之影響 38
4-1-3 烘乾時間對DGAC吸附鎘金屬之影響 41
4-2 吸附鎘金屬之影響 43
4-2-1 反應時間 43
4-2-2 pH值對活性碳吸附鎘金屬之影響 47
4-2-3 等溫吸附曲線 48
4-2-4 動力吸附模式 51
4-3 再生批次實驗 57
4-4 管柱實驗 58
4-4-1 管柱吸附 58
4-4-2 管柱吸附之再生與重覆使用 59
第五章、結論與建議 64
5-1 結論 64
5-2 建議 65
參考文獻 66

圖目錄
Figure 1. Speciation diagram of cadmium, TOTCd = 10-3 M. 16
Figure 2. Linear isotherm of Freundilch model. 22
Figure 3. Schematic of glass reactor. 29
Figure 4. Schematic of column reactor. 30
Figure 5. The effects of impregnation method on Cd removal and the amount of D2EHPA dissolution. Solute test: DGAC=20 g/L. Adsorbent test: GAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Initial pH =5.7. Reaction time = 30 min. Shaking speed = 150 rpm. Particle size = 0.71~1.41 mm. 38
Figure 6. The effects of D2EHPA dosage on Cd removal and the amount of D2EHPA attachment. GAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Reaction time = 30 min. Particle size = 0.71~1.41 mm. Error bars are one standard deviation from the mean for triplicate experiments. 39
Figure 7. SEM image of GAC and DGAC : (a) GAC, (b) DGAC (10 g D2EHPA), (c) DGAC (20 g D2EHPA). Magnification = 3000×. 40
Figure 8. Plot of different dosage of D2EHPA versus BET. Red line is the BET of GAC. 41
Figure 9. The effects of drying time on Cd removal and the amount of D2EHPA attachment. GAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Reaction time = 2 hr. Fixed pH = 7.0. Error bars are one standard deviation from the mean for triplicate experiments. 42
Figure 10. The effects of drying time on BET and micropore volume. 43
Figure 11. Cd(II) removal efficiency as a function of reaction time for GAC and DGAC. GAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Fixed pH = 7.0. Error bars are one standard deviation from the mean for triplicate experiments. 44
Figure 12. (a) Cd(II) removal efficiency as a function of reaction time for GAC and DGAC. (b) Plot of pH versus reaction time for GAC and DGAC. GAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Initial pH = 7. Particle size = 0.71~1.41 mm. Error bars are one standard deviation from the mean for triplicate experiments. 46
Figure 13. Cd(II) removal efficiency as a function of reaction time for DGAC under various pH conditions. DGAC = 10 g/L. Initial Cd(II) concentration = 100 mg/L. Particle size = 0.71~1.41 mm. Error bars are one standard deviation from the mean for triplicate experiments. 48
Figure 14. Adsorption isotherm for DGAC. Fixed pH = 7.0. Reaction time = 12 hrs. 49
Figure 15. Adsorption isotherm for GAC. Fixed pH = 7.0. Reaction time = 6 hrs. 49
Figure 16. Plot of adsorbed amount versus reaction time for Cd at various initial concentrations and different GAC. 52
Figure 17. Pseudo-first-order kinetics for Cd onto GAC. GAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 53
Figure 18. Pseudo-first-order kinetics for Cd onto DGAC. DGAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 53
Figure 19. Pseudo-second-order kinetics for Cd onto GAC. GAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 55
Figure 20. Pseudo-second-order kinetics for Cd onto DGAC. DGAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 55
Figure 21. Pseudo-second-order kinetics for Cd onto GAC within 20 min. GAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 56
Figure 22. Pseudo-second-order kinetics for Cd onto DGAC within 20 min. DGAC = 10 g/L. Initial Cd(II) concentration = 100 and 200 mg/L. Fixed pH = 7.0. 56
Figure 23. Comparision between qe obtained from pseudo-second order model and Langmuir isotherms model. 57
Figure 24. DGAC regenerated by various regenerants. DGAC = 10 g/L. 58
Figure 25. Breakthrough curves for Cd adsorption onto DGAC. Influent Cd(II) concentration = 100 mg/L. Influent pH = 7. Internal diameter = 1.8 cm. Depth = 69.5 cm. EBCT = 10 min. 59
Figure 26. Breakthrough curves for Cd adsorption onto DGAC. Influent Cd(II) concentration = 100 mg/L. Influent pH = 7. Internal diameter = 1.8 cm. Depth = 69.5 cm. EBCT = 10 min. 61
Figure 27. Breakthrough curves for Cd adsorption onto DGAC. Influent Cd(II) concentration = 100 mg/L. Influent pH = 7. Internal diameter = 1.8 cm. Depth = 69.5 cm. EBCT = 10 min. 62
Figure 28. Breakthrough curves for Cd adsorption onto DGAC. Influent Cd(II) concentration = 100 mg/L. Influent pH = 7. Internal diameter = 1.8 cm. Depth = 69.5 cm. EBCT = 10 min. 63
Figure 29. Scheme of the preparation coated DGAC. 65

表目錄
Table 1. Summary of sorption density of various adsorbents. 11
Table 2. Summary of sorption density of various adsorbents (continued). 12
Table 3. Summary of sorption density of various adsorbents (continued). 13
Tabel 4. Physico-chemical properties of F-300 GAC. 25
Table 5. Reagents used in this study. 27
Table 6. Langmuir and Freundlich isotherms parameter(25℃). 50
Table 7. Data of Langmuir isotherms model in different initial concentration. 51
Table 8. Pseudo second-order parameter. 54
Table 9. Cd adsorbed on DGAC in different regeneration cycles. 61
參考文獻 Babel, S., Kurniawan, T.A., 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54, 951.
Benjamin, M.M., 2002. Water chemistry.
Bhattacharya, A.K., Venkobachar, C., 1984. Removal of cadmium (II) by low cost adsorbents. Journal of Environmental Engineering 110, 110.
Chen, W., Parette, R., Zou, J., Cannon, F.S., Dempsey, B.A., 2007. Arsenic removal by iron-modified activated carbon. Water Research 41, 1851.
Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sanchez-Polo, M., 2007. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management 85, 833.
Fan, H.-J., Anderson, P.R., 2005. Copper and cadmium removal by Mn oxide-coated granular activated carbon. Separation and Purification Technology 45, 61.
Gonzalez, M.P., Saucedo, I., Navarro, R., Avila, M., Guibal, E., 2001. Selective separation of Fe(III), Cd(II), and Ni(II) from dilute solutions using solvent-impregnated resins. Industrial and Engineering Chemistry Research 40, 6004.
Gu, Z., Fang, J., Deng, B., 2005. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science and Technology 39, 3833.
Ho, Y.-S., 2003. Removal of copper ions from aqueous solution by tree fern. Water Research 37, 2323.
Ho, Y.-S., Ofomaja, A.E., 2006. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials 129, 137.
Ho, Y.S., McKay, G., 1999. Batch lead(II) removal from aqueous solution by peat: equilibrium and kinetics. Process Safety and Environmental Protection 77, 165.
Ho, Y.S., McKay, G., 1999. The sorption of lead(II) ions on peat. Water Research 33, 578.
Ho, Y.S., McKay, G., 2003. Sorption of dyes and copper ions onto biosorbents. Process Biochemistry 38, 1047.
Huang, X., Gao, N.-y., Zhang, Q.-l., 2007. Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon. Journal of Environmental Sciences 19, 1287.
Huynh, H.T., Tanaka, M., 2003. Removal of Bi, Cd, Co, Cu, Fe, Ni, Pb, and Zn from an aqueous nitrate medium with bis(2-ethylhexyl)phosphoric acid impregnated kapok fiber. Industrial and Engineering Chemistry Research 42, 4050.
Jeong, Y., Fan, M., Singh, S., Chuang, C.-L., Saha, B., Hans van Leeuwen, J., 2007. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chemical Engineering and Processing: Process Intensification 46, 1030.
Jusoh, A., Su Shiung, L., Ali, N.a., Noor, M.J.M.M., 2007. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206, 9.
Kabay, N., Arda, M., Saha, B., Streat, M., 2003. Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. Reactive and Functional Polymers 54, 103.
Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C., 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology 76, 63.
Kang, K.C., Kim, S.S., Choi, J.W., Kwon, S.H., 2008. Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. Journal of Industrial and Engineering Chemistry 14, 131.
Kula, I., Ugurlu, M., Karaoglu, H., Celik, A., 2008. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technology 99, 492.
Kumar, U., Bandyopadhyay, M., 2006. Fixed bed column study for Cd(II) removal from wastewater using treated rice husk. Journal of Hazardous Materials 129, 253.
Lach, J., Okoniewska, E., Neczaj, E., Kacprzak, M., 2007. Removal of Cr(III) cations and Cr(VI) anions on activated carbons oxidized by CO2. Desalination 206, 259.
Li, C.-W., Chen, Y.-M., Hsiao, S.-T., 2008. Compressed air-assisted solvent extraction (CASX) for metal removal. Chemosphere 71, 51.
Liu, J., Chen, H., Hu, Y., Guo, Z., Liu, C., Qu, R., 2005. Extraction of In(III) by solvent impregnated resin containing D2EHPA. Journal of Rare Earths 23, 169.
Liu, S.X., Chen, X., Chen, X.Y., Liu, Z.F., Wang, H.L., 2007. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification. Journal of Hazardous Materials 141, 315.
Macias-Garcia, A., Gomez-Serrano, V., Alexandre-Franco, M.F., Valenzuela-Calahorro, C., 2003. Adsorption of cadmium by sulphur dioxide treated activated carbon. Journal of Hazardous Materials 103, 141-152.
Macias-Garcia, A., Valenzuela-Calahorro, C., Espinosa-Mansilla, A., Bernalte-Garcia, A., Gomez-Serrano, V., 2004. Adsorption of Pb2+ in aqueous solution by SO2-treated activated carbon. Carbon 42, 1755-1764.
Mondal, P., Balomajumder, C., Mohanty, B., 2007. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: Effects of shaking time, pH and temperature. Journal of Hazardous Materials 144, 420.
Osipow, L.I., 1972. Surface chemistry.
Pandey, P.K., Verma, Y., Choubey, S., Pandey, M., Chandrasekhar, K., 2008. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresource Technology 99, 4420.
Park, D., Yun, Y.-S., Park, J.M., 2006. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. Journal of Hazardous Materials 137, 1254.
Park, S.-J., Jang, Y.-S., 2002. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). Journal of Colloid and Interface Science 249, 458.
Park, S.-J., Kim, Y.-M., 2005. Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers. Materials Science and Engineering A 391, 121.
Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., Tavares, T., 2008. Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chemical Engineering Journal 136, 195.
Rane, M.V., Sadanandam, R., Bhattacharya, K., Tangri, S.K., Suri, A.K., 2006. Use of mixed-metals isotherm and log-log McCabe Thiele's diagram in solvent extraction--A case study. Hydrometallurgy 81, 1.
Rangel-Mendez, J.R., Tai, M.H., Streat, M., 2000. Removal of cadmium using electrochemically oxidized activated carbon. Process Safety and Environmental Protection 78, 143.
Reed, B.E., Robertson, J., Jamil, M., 1995. Regeneration of granular activated carbon (GAC) columns used for removal of lead. Journal of Environmental Engineering 121, 653.
Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcia, M.A., Moreno-Castilla, C., 2003. Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon 41, 323.
Singh, S., Yenkie, M.K.N., 2004. Competitive adsorption of some hazardous organic pollutants from their binary and ternary solutions onto granular activated carbon columns. Water, Air, and Soil Pollution 156, 275.
Trochimczuk, A.W., Kabay, N., Arda, M., Streat, M., 2004. Stabilization of solvent impregnated resins (SIRs) by coating with water soluble polymers and chemical crosslinking. Reactive and Functional Polymers 59, 1.
Tsai, W.T., Chang, Y.M., Lai, C.W., Lo, C.C., 2005. Adsorption of basic dyes in aqueous solution by clay adsorbent from regenerated bleaching earth. Applied Clay Science 29, 149.
Vadivelan, V., Kumar, K.V., 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science 286, 90.
Yin, C.Y., Aroua, M.K., Daud, W.M.A.W., 2007. Impregnation of palm shell activated carbon with polyethyleneimine and its effects on Cd2+ adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 307, 128.
Youssef, A.M., El-Nabarawy, T., Samra, S.E., 2004. Sorption properties of chemically-activated carbons: 1. Sorption of cadmium(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 235, 153.
Zhang, Q.L., Lin, Y.C., Chen, X., Gao, N.Y., 2007. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials 148, 671.
中華民國行政院環境保護署, 2007. 放流水標準.
中華民國行政院環境保護署, 2008. 飲用水水質標準.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信