淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2705200608401600
中文論文名稱 報酬率與變異數極小避險策略的關係
英文論文名稱 Minimum-Variance Futures Hedging Under Alternative Return Specifications
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 94
學期 2
出版年 95
研究生中文姓名 游儲宇
研究生英文姓名 Chu-Yu You
學號 693490863
學位類別 碩士
語文別 中文
口試日期 2006-05-06
論文頁數 73頁
口試委員 指導教授-李命志
委員-邱建良
委員-林卓民
委員-邱哲修
中文關鍵字 期貨避險  報酬  一般化自我迴歸條件變異數模型 
英文關鍵字 Futures Hedging  Return  GARCH 
學科別分類 學科別社會科學商學
中文摘要 期貨避險的變異數極小公式是期貨現貨間報酬率的條件共變異數除以期貨報酬的條件變異數。這標準的結果可在許多衍生性商品風險管理的教科書中找到但這個結論必須要在某些條件下才可成立。但實際上傳統的避險比率只有以報酬金額來計算才是變異數最小的。
本文在不同報酬型式下的極小變異數避險比率公式,將會發現傳統的避險比率只在以金額表示下的報酬型態才是變異數極小,其餘的報酬型態則否。然而在實證方面對數報酬、報酬百分比上使用傳統的避險比率會得到較佳結果,但在交叉避險下使用報酬百分比、對數報酬計算MVHR與傳統的避險比率下會有顯著的不同,經由模擬交叉避險中若使用傳統的避險比率會使避險績效顯著的降低。
英文摘要 It is widely known that the variance-minimizing futures hedge is given by the ratio of the conditional covariance of the futures and spot returns to the conditional variance of the futures return. This standard result can be found in virtually every leading derivatives or risk management textbook. There is, however, much confusion over the conditions under which this result holds. This result has been asserted either explicitly or implicitly when returns are measured in dollar terms.
In this article, we examine the minimum-variance hedge ratio (MVHR) under alternative return specifications. Formulas for the MVHR are derived for cases in which returns are measured in dollar terms, percentage terms, and log terms.. It is found that the conventional hedge ratio given by the ratio of the conditional covariance of the futures and spot returns to the conditional variance of the futures return is variance-minimizing when computed from returns measured in dollar terms but not from returns measured in percentage or log terms. the MVHR can vary significantly from the conventional hedge ratio computed from percentage or log returns when used in cross-hedging situations. Simulation analysis shows that the incorrect application of the conventional hedge ratio can substantially reduce hedging performance in cross-hedging situations.
論文目次 目 錄
第一章 緒論
第一節研究動機………………………………………………………..1
第二節研究目的………………………………………………………..1
第三節研究架構………………………………………………………..2
第四節研究流程………………………………………………………..4

第二章 理論基礎與相關文獻探討
第一節指數期貨探討.………………………………………………..5
第二節避險理論與基楚.……………………………………………..7
第三節避險實證之文獻探討………………………………….….…18

第三章 研究方法
第一節資料說明..…………………………………………………25
第二節單根檢定………………………………………………………27
第三節ARCH模型………………………………………………………30
第四節GARCH模型…………………………………………………….33
第五節雙變量GARCH模型避險……………………………………….44
第六節不同報酬型態下的避險比率…………………………………46

第四章 實證結果與分析
第一節資料處理………………………………………………………49
第二節單根檢定………………………………………………………52
第三節ARCH效果檢定……………………………………………....54
第四節固定相關係數檢定……………………………………………55
第五節不同報酬型態下的避險績效…………………………………56

第五章 結論與建議
第一章結論……………………………………………………………67

參考文獻……………………………………………………………..68

表 目 錄
【表2-1-1】世界主要股價指數之計算方法…………………………………………5
【表2-1-2】世界主要指數期貨契約簡介……………………………………………6
【表2-2-1】不同的避險比率…………………………………………………………11
【表3-4-1】多變量GARCH 模型之比較………………………………………………44
【表4-1-1】股價指數、原油期貨與現貨報酬基本統計量…………………………49
【表4-2-1】指數與原油的期貨現貨時間序列資料之單根檢定(水準項)…………53
【表4-2-2】指數與原油的期貨現貨報酬率時間序列資料之單根檢定(差分項)…54
【表4-3-1】指數與原油的期貨現貨ARCH效果檢定…………………………………55
【表4-4-1】指數與原油的期貨現貨標準化殘差之固定相關係數檢定……………56
【表4-5-1】近月與遠月估計參數……………………………………………………60
【表4-5-2】近月與遠月期貨契約報酬率變異數……………………………………61
【表4-5-3】MVHR與傳統避險比較……………………………………………………62
【表4-5-4】直接與交叉估計參數……………………………………………………64
【表4-5-5】直接與交叉避險的報酬變異數…………………………………………65
【表4-5-6】MVHR與傳統避險風險比較………………………………………………66


圖 目 錄

【圖4-1-1】現貨與期貨資料報酬圖………………………………50
【圖4-1-2】現貨與期貨時間序列圖………………………………51
【圖4-5-1】估計期間(500天)與預估1天之移動視窗方法……57
【圖4-5-2】近月到期的避險比率…………………………………58
【圖4-5-3】六個月到期的避險比率………………………………58
【圖4-5-4】直接避險的避險比率…………………………………62
【圖4-5-5】交叉避險的避險比率…………………………………63
參考文獻 參 考 文 獻

中文部分:

1. 朱明輝,股價指數最適避險比率與避險效益之衡量-結構性轉變模型應用,國立政治大學經濟所碩士論文,民國九十二年七月。

2. 李命志、吳佩珊、鄭婉秀,基差訊息運用對避險績效之影響,朝陽商管評論,第三卷,第一期,101-120民國九十三年一月。

3. 郭同境,最適避險操作策略-台灣股價指數之時證研究,私立淡江大學財務金融所碩士論文,民國八十七年六月。

4. 陳衍龍,國際指數期貨市場避險與避險比率之研究,國立交通大學財務金融所未士論文,民國九十三年六月。

5. 魏志良,國際股價指數期貨與現貨直接避險策略之研究,私立淡江大學財務金融所碩士論文,民國九十一年六月。

英文部分:

1. Adams, J. and Montesi, C. J. (1995) Major issues Related to hedge accounting, Financial Accounting Standard Board, Newark, Connecticut.

2. Ahmadi, H. Z., Sharp, P. A. and Walther, C. H. (1986) The effectiveness of futures and options in hedging currency risk, Advances in Futures and Options Research, 1, 171-191.

3. Anderson, R. W. and Danthine, J.P. (1981).Cross hedging, Journal of Political Economy, 81, 1182-1196.

4. Baillie, R. T. and Myers, R. J. (1991). Bivariate GARCH estimation of the optimal commodity futures hedge, Journal of Applied Econometrics, 6, 109-124.
5. Bawa, V. S. (1975) Optimal rules for ordering uncertain prospects, Journal of Financial Economics, 2, 95-121.

6. Bawa, V. S. (1978) Safety-first, stochastic dominance and optimal portfolio choice, Journal of Financial and Quantitative Analysis, 33, 25-71.

7. Bawa, V. S. and Lindenberg, E. B. (1977) Capital market equilibrium in a mean-lower partial moment framework, Journal of Financial Economics, 5, 189 - 200.

8. Benet, B. A. (1992). Hedge period length and ex ante futures hedging effectiveness: The case of foreign-exchange risk cross hedges, Journal of Futures Markets, 12, 163-175.

9. Bollerslev, T. R., Engle, F., and Wooldridge, J. M., (1988) A capital- asset pricing model with time-varying covariances, Journal of Political Economy, 96, 116-131.

10. Bollerslev, T., (1986) Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327.

11. Bollerslev, T., (1990) Modeling the coherence in short-run nominal exchange rates generalized ARCH, Review of Economics and Statistics, 70, 498-505.

12. Cecchetti, S. G., Cumby, R. E., and Figlewski, S. (1988) Estimation of the optimal futures hedge, Review of Economics and Statistics, 70, 623 - 630.

13. Chamberlain, G. (1983) A characterization of the distributions that imply mean-variance utility functions, Journal of Economic Theory, 29, 185 - 201.

14. Chen S. S., Lee, C. F., and Shrestha , K. (2003). Futures hedge ratios: a review, Quarterly Review of Economics and Finance, 43, 433 - 465.

15. Chen, S. S., Lee, C. F., and Shrestha, K. (2001). On a mean-generalized semi-variance approach to determining the hedge ratio, Journal of Futures Markets, 21, 581 - 598.

16. Chen, Y. J., Duan, J. C. and Hung, M.W. (1999). Volatility and maturity effects in the Nikkei index future, Journal of Futures Markets, 8, 895 -909.


17. Cheung, C. S., Kwan, C. C. Y., and Yip, P. C. Y. (1990). The hedging effectiveness of options and futures: A mean-Gini approach, Journal of Futures Markets, 10, 61-74.

18. Christopherson, J. A., Ferson, W. E., and Glassman, D. A. (1998). Conditioning managers alphas on economic information: Another look at the persistence of performance, Review of Financial Studies, 11, 111-142.

19. Dickey, D and W. Fuller (1979) Distribution of estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431.

20. Donald Lien (2005). A note on the superiority of the OLS hedge ratio, Journal of Futures Markets, 11. 1121-1126.

21. Ederington, L. (1979). The hedging performance of the new futures markets, Journal of Finance, 34, 157-170.

22. Eftekhari, B. (1998). Lower partial moment hedge ratios, Applied Financial Economics, 8, 645-652.

23. Eftekhari, B. and Stachell, S. E. (1996) Non-normality of returns in emerging markets: A comparison of mean-variance versus mean-lower partial moment asset pricing models, in Research in International Business and Finance, Supplement 1, eds J. Doulkas and L. Lang, JAI Press, Greenwich, Connecticut, pp.267-277.

24. Engle, R. F. , (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, Journal of Business and Economic Statistics, 20(3), 339-350.

25. Engle, R. F., (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometirca, 50, 987-1008.

26. Ferson, W. E., and Schadt, R. W. (1996). Measuring fund strategy and performance in changing economic conditions, Journal of Finance, 51, 425-461.

27. Ferson, W. E., and Warther, V. A. (1996). Evaluating fund performance in a dynamic market, Financial Analysts Journal, 26, 20-28.

28. Figlewski, S. (1984). Hedging performance and basis risk in stock index futures, Journal of Finance, 39, 657-669.
29. Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns, American Economic Review, 67, 116-126.

30. Gray, R. W. and Rutledge, D. J. S. (1971). The economics of commodity futures markets:A Survey, Review of Marketing Agricultural Economics, 39, 57-108.
31. Harlow, W. V. and Rao, R. K. S. (1989) Asset pricing in a generalized mean-lower partial moment framework: theory and evidence, Journal of Financial and Quantitative Analysis, 24, 285-311.

32. Joelle Miffre. (2004). Conditional OLS minimum variance hedge ratio, Journal of Futures Markets, 10, 9459-64.

33. Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures, Review of Economic Studies, 27, 139-151.

34. Kolb, R.W. and Okunev, J. (1992). An empirical evaluation of the extended mean-Gini coefficient for futures hedging, Journal of Futures Markets, 12, 177-186.

35. Kroner, K. F. and Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures, Journal of Financial and Quantitative Analysis, 28, 535-551.

36. Lee, W. Y. and Rao, R. (1988). Mean lower partial moment valuation and log normally distributed returns, Management Science, 34, 446-453.

37. Lence, S. H. (1995). The economic value of minimum variance hedges, American Journal of Agricultural Economics, 77, 353-364.

38. Lence, S. H. (1996). Relaxing the assumptions of minimum variance hedging, Journal of Agricultural and Resource Economics, 21, 39-55.

39. Lien, D. and Luo, X. (1993a). Estimating the extended mean-Gini coefficient for futures hedging, Journal of Futures Markets, 13, 665-676.

40. Lien, D. and Tse, Y. K. (1998). Hedging time-varying downside risk, Journal of Futures Markets, 18, 705-722.

41. Lien, D. and Tse, Y. K. (2000). Hedging downside risk with futures contracts, Applied Financial Economics, 10, 163-170.

42. Mao, J. (1970). Models of capital budgeting, E-V vs E-S, Journal of Financial and Quantitative Analysis, 4, 657-675.

43. Markowitz, H. M. (1952) Portfolio Selection, Journal of Finance, 7, 77-91.

44. Myers, R. J. (1991). Estimating time-varying optimal hedge ratios on futures markets, Journal of Futures Markets, 11, 39-53.

45. Myers, R. J., and Thompson, S. R. (1989). Generalized optimal hedge ratio estimation, American Journal of Agricultural Economics,,71, 858-868.

46. Newbury, D. (1970). A theorem on the measurement of inequality, Journal of Economic Theory, 2, 26-46.

47. Park, T. H. and Switzer, L. N. (1995). Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note, Journal of Futures Markets, 15, 61-67.

48. Phillips, Peter. C. B and Pierre Perron (1988). Testing for a unit root in time series regression, Biometrika, 75, 335 – 346.

49. Price, K., Price, B., and Nantell, T. J. (1982). Variance and lower partial moment measures of systematic risk: some analytical and empirical results, Journal of Finance, 37, 843 - 855.

50. Sephton, P. S. (1993). Hedging wheat and canola at the Winnipeg commodity exchange, Applied Financial Economics, 3, 67-72.

51. Shalit, H. (1995). Mean-Gini hedging in futures markets, Journal of Futures Markets, 15, 617-635.

52. Steil, B. (1993). Currency options and the optimal hedging of contingent foreign exchange exposure, Economica, 60, 413-431.

53. Ware, R. and Winter, R. (1988). Forward markets, currency options and the hedging of foreign exchange risk, Journal of International Economics, 25, 291-302.

54. Working, H. (1953). Hedging reconsidered. Journal of Farm Economics, 35, 544-561.

55. Yitzhaki, S. (1982). Stochastic dominance, mean variance, and gini’s mean difference, American Economic Review, 72, 178-185.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信