淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2703200709330200
中文論文名稱 長方型斷面高層建築順風向氣彈互制識別之參數研究
英文論文名稱 Parametric study of along wind aeroelasticity for high-rise buildings with rectangular shapes
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 95
學期 1
出版年 96
研究生中文姓名 張英傑
研究生英文姓名 Ying-Chieh Chang
學號 693310517
學位類別 碩士
語文別 中文
口試日期 2007-01-25
論文頁數 185頁
口試委員 指導教授-吳重成
委員-陳若華
委員-鄭啟明
中文關鍵字 氣彈 
英文關鍵字 aeroelasticity 
學科別分類 學科別應用科學土木工程及建築
中文摘要 本論文探討使用強制振動方式對一系列不同比例高層建築之順風向氣彈行為進行系統識別,求得頻率相關之氣動力阻尼與氣動力勁度並比較之。本研究藉由白噪音之強制振動提出一套識別法,理論部分延續林勝偉的論文內容,首先在頻率域假設適當參數確立自激力矩與結構傾角位移之線性關係型式,在時域轉換成狀態空間方程式後,代入平滑流場下之強制振動結構運動方程式,並整合成氣彈互制之狀態空間方程式。比較不同風速下氣彈互制頻率反應函數之實驗與理論值,結合基因演算法與傳統梯度法最佳化進行曲線擬合,決定待求參數值並進而識別出結構的氣動力阻尼與氣動力勁度。

為了將理論推展應用並進行參數研究,本文使用9座模型進行識別試驗,共有3種高度,5種斷面深寬比,實驗組合為15組,因此結果總計有15組不同之氣動力導數比較。值得一提的是,有別於林勝偉的論文,本文進行曲線擬合時同時對七個風速下之轉換函數進行擬合,解決了由個別風速擬合所產生的不同氣動力導數問題;另外,本文亦提出以梯度法配合基因演算法求解,以達到更佳的擬合結果。根據15組識別結果顯示,順風向氣動力阻尼幾皆為負值,且較高之建築具較大氣動力阻尼;氣動力勁度之正負不定,但對氣彈效應貢獻不大。
英文摘要 This thesis investigates the aero-elastic behavior of a series of high-rise buildings with different shapes by using a novel identification scheme that employs the forced actuating technique. The aero-elasticity of the buildings are defined by the frequency-dependent aerodynamic damping and stiffness, and they were identified through wind tunnel experiments and parametric comparisons were finally made. By following the formulation in the thesis of Mr. Lin, the relation between the motion-induced moment and the rotation angle was firstly assumed to be linear. The frequency domain representation by the parameters to be determined can then be converted into a state space equation in time domain. The incorporation of such a relation with the equation of motion under wind flow and forced actuation further leads to an aero-elastic state space equation with an input from the forced actuation. The frequency response function thus induced from this aero-elastic state space equation can be used to compare with the experimental data by curve-fitting each other in order to determine the unknown parameters and consequently the aerodynamic damping and stiffness. In performing the curve-fitting, the genetic algorithm and traditional gradient method were used in corporation to fine tune the final results.
The parametric study of building aero-elasticity was conducted by using nine building models in the wind tunnel tests, which results in totally fifteen sets of results. It is worth noticing that, unlike the way employed in the thesis of Mr. Lin, this research used the experimental data under all wind speeds simultaneously in curve-fitting, thus avoided the result inconsistency from every single data set. In addition, the traditional gradient method was also proposed in this research to improve the accuracy of curve-fitted results. According to the fifteen sets of identified results, it is observed that the aerodynamic dampings in the along-wind motion are all negative, and the value increases with the building height. However, the aerodynamic stiffness could be negative or positive, and their contribution to the building aero-elasticity is not significant.
論文目次 淡江大學論文提要…………………………………………………………………...I
英文提要……………………………………………………………………………..II
目錄………………………………………………………………………….………III
圖表目錄…………………………………………………………………………….IV
第一章 導論 ………………………………………………………………………1
1.1 前言 ………………………………………………………………………1
1.2 研究動機與目的 …………………………………………………………2
1.3 研究內容與架構 …………………………………………………………3
第二章 相關理論回顧 ………………………………………………………………5
2.1結構風載……………………………………………………………………5
2.1.1順風向風力 …………………………………………………………5
2.1.2橫風向風力 …………………………………………………………6
2.1.3扭轉向風力 …………………………………………………………7
2.1.4自身擾動力—氣動力阻尼 …………………………………………7
2.2橋樑受風振動………………………………………………………………8
2.2.1顫振(Flutter)………………………………………………………8
2.2.2扭轉發散(Torsional divergence) ………………………………9
2.2.3渦致振動(Votrex shedding)………………………………………9
2.2.4馳振(Galloping) …………………………………………………10
2.2.5抖振(Buffeting) …………………………………………………10
2.3系統識別 …………………………………………………………………10
2.3.1曲線擬合(非參數系統識別)………………………………………11
2.3.2控制典型式(Controllable Canonical Form) …………………15
2.4基因遺傳演算法則 ………………………………………………………19
第三章 基因遺傳演算法則…………………………………………………………22
3.1強制振動下之高層建築運動方程式 ……………………………………22
3.2結構參數之識別 …………………………………………………………23
3.2.1結構物之自然頻率與阻尼比識別…………………………………23
3.2.2結構物之轉動慣量率定……………………………………………24
3.3氣動力導數應用於高層建築之理論推導 ………………………………25
3.4對實驗轉換函數與相角作基因演算與梯度法曲線擬合 ………………29
3.5驗證實驗的正確性 ………………………………………………………30
第四章 實驗儀器與設備、實驗流程與實驗結果…………………………………32
4.1實驗儀器與設備 …………………………………………………………32
4.1.1大氣風動實驗室……………………………………………………32
4.1.2實驗模型……………………………………………………………32
4.1.3實驗儀器……………………………………………………………34
4.2實驗流程 …………………………………………………………………38
4.2.1結構系統識別………………………………………………………38
4.2.2順風向結構氣動力導數之識別實驗………………………………39
4.2.3紊流場驗證實驗……………………………………………………40
4.3實驗結果 …………………………………………………………………40
4.3.1結構物扭轉向之自然頻率與阻尼比識別…………………………40
4.3.2轉動慣量……………………………………………………………41
4.3.3結構勁度與阻尼係數………………………………………………42
4.3.4氣動力導數…………………………………………………………43
4.3.5紊流場實驗之驗證…………………………………………………45
第五章 結論與展望…………………………………………………………………46
參考文獻 ……………………………………………………………………………48

附圖與附表

表4.1 模型自然頻率與阻尼比----------------------------------------52
表4.2 模型轉動慣量 ----------------------------------------------52
表4.3 模型轉動向阻尼與勁度----------------------------------------53
表4.4 無因次化六參數----------------------------------------------53
表4.5 基因演算法、梯度法之穩定性檢測與時間域驗證------------------54
表4.6 紊流場實驗驗證----------------------------------------------55
圖3.1 氣彈力模型之強制振動試驗架設示意圖--------------------------56
圖4.1.1 九組模型實體圖--------------------------------------------57
圖4.1~4.75 多項式曲線擬合----------------------------------58~95
圖4.76~4.90 轉動慣量律定之線性迴歸-------------------------95~102
圖4.91~4.195 基因演算法與梯度法曲線擬合---------------------103~155
圖4.196~4.225 七風速實驗轉換函數比較與七風速擬合轉換函數比較-156~170
圖4.226~4.255 氣動力導數-------------------------------------171~185
參考文獻 參考文獻
【1】.林勝偉,”應用白噪音強制振動於高層建築之氣彈互制識別”,吳重成博士指導,私立淡江大學土木工程研究所碩士論文,民國94年6月。
【2】.N,Isyumov and M. Poole,”Wind Induced Torque on Square and Rectangular Building Shapes”,J. of Wind Engineering and Industrial Aerodynamics,(1983),p183-196.
【3】.Zhang,W.J.Xu,Y.L., and Kwok, K.C.S.,”Torsional Vibration and Stability of Wind-excited Tall Buildings with Eccentricity”,J. of Wind Engineering and Industrial Aerodynamics, 50 (1993),p299-308.
【4】.Davenport,A.G. and Tschanz, T.,Proc. ”The Response of Tall Buildings To Wind : Effect of Wind Direction and The Direct Measurement of Dynamic Force” . U.S. National Conference on Wind Engineering, Seattle,(1981)205.
【5】.Waldeck,J.L.,1992,”The Measured and Predicted Response of a 300m Concrete Chimney ,”J. Wind Eng. Ing. Aero.,41-44,P229-240.
【6】.董人豪,”大跨橋樑顫振與抖振現象之主動控制應用與研究”,吳重成博士指導,私立淡江大學土木工程研究所碩士論文,民國90年6月。
【7】.簡士為,”應用強制振動之顫振導數系統識別”,吳動成博士指導,私立淡江大學土木工程研究所碩士論文,民國93年7月。
【8】. 中央氣象局網站
【9】. Wu, J. C. , 2000, “Modeling of an Actively Braced Full-Scale Building Considering Control-Stucture Interaction”, Earthquake Engineering and Srtuctural Dynamics, Vol.29, No.9, Sep. , pp.1325-1342.
【10】.Wu, J. C. ,and Pan, B. C. , 2002,”Wind Tunnel Verification of Actively Controlled High-Rise Building in Along-Wind Motion”, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, No.12-15,p.p.1933-1950.
【11】. 潘柏辰,”高層建築受風順風向反應之主動控制與風洞實驗”,吳重成博士指導,私立淡江大學土木工程研究所碩士論文,2000年6月。
【12】. 林偉傑,”高層建築風力與結構側向及扭轉向反應之互制效應研究”,吳重成博士指導,私立淡江大學土木工程研究所碩士論文,2003年7月。
【13】.Panos J. Antsaklis and Anthony N. Micheal, “Linear Systems”, McGraw-Hill, 1998.
【14】. 林勝宏,”國際股市關聯性結構之研究-Copula模型之應用”,余尚武博士指導,國立台灣科技大學資訊管理系研究所碩士論文,2004年5月。
【15】. Michalewicz, Z. (1992), “Genetic Algorithms + Data Structures = Evolution Programs,” Springer, Third, Revised and Extended Edition.
【16】. Beasley, D., D. R. Bull and R.R. Martin (1993), “An Overview of Genetic Algorithms: Part 1, Fundamentals,” University Computing, Vol. 15, No. 2, pp. 58-69.
【17】. Holland,J. H.,Adaptation in Natural and Artificial Systems,Ann Arbor,MI: The University of Michigan Press,1975.
【18】.Goldbreg D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA:Addison-Wesley, 1989.
【19】. De Jong,K.A.,“Analysis of the behavior of a class of a genetic adaptive systems,”Ph. D. Dissertation, The University Michigan, Ann Arbor,1975.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-04-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-04-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信