淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2702202010402800
中文論文名稱 基於無線射頻辨識輕量級隱私保護協定之研究
英文論文名稱 Research on RFID-based Lightweight Privacy Protection Protocols
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical And Computer Engineering
學年度 108
學期 1
出版年 109
研究生中文姓名 凃彥鋒
研究生英文姓名 Yen-Feng Tu
學號 606450103
學位類別 碩士
語文別 中文
口試日期 2020-01-09
論文頁數 128頁
口試委員 指導教授-莊博任
委員-許獻聰
委員-陳省隆
中文關鍵字 無線射頻辨識(RFID)  隱私安全  輕量級協定  認證  BAN logic  Proverif  OPNET 
英文關鍵字 Radio Frequency Identification(RFID)  Security and privacy  Lightweight protocols  Authentication  BAN logic  Proverif  OPNET 
學科別分類 學科別應用科學電機及電子
中文摘要 為了解決RFID系統隱私安全的問題,使用安全認證協定是保護RFID系統最有效的方法之一,目前已有許多認證的協定來保護隱私安全或預防RFID上的攻擊,其中Fan等人協定宣稱能在RFID醫療系統認證上抵擋常見攻擊,但經過我們的分析後Fan等人協定是會受到竊聽、假冒、標籤追蹤、標籤克隆、標籤匿名性等攻擊,這對RFID系統會帶來許多危險,我們考量到許多採用RFID技術的系統中有許多人或物品使用RFID標籤,必須使用無源的低成本標籤,由於無源標籤計算能力和儲存能力受到一定限制,標籤計算的函數不能夠太複雜且儲存的數據不能夠太多;我們也考量到使用者隱私安全的問題,不能受到RFID的攻擊,因此我們提供了輕量級的隱私保護協定來達成目的。
在我們協定中,我們假設閱讀器與伺服器之間、閱讀器與標籤之間的通訊通道均不安全,進入閱讀器信號覆蓋範圍內的標籤中,只有特定標籤與閱讀器互動,標籤不存在碰撞或者已經通過防碰撞處理,運用了函數XCro( )、旋轉、XOR等輕量級函數完成整個認證協定,經過分析後我們的協定比Fan等人的協定還要安全,我們的協定可以順利抵擋竊聽、假冒、標籤追蹤、標籤克隆、標籤匿名性等攻擊,在效能評估下,我們所使用的加密函數跟Fan等人協定一樣都是輕量級函數,雖然在儲存量範圍內我們協定是比Fan等人協定還要多,但其不影響效能,我們的協定在認證過程中的計算量、通訊次數與傳輸量比Fan等人的還要少,對於協定來說計算少、步驟少又安全這樣是最好的,我們的協定比Fan等人的還要安全且效能比他們好。在安全與效能分析完後我們採用BAN邏輯證明這個方法來證明我們的輕量級協定的安全性與正確性,最後我們證明了我們的協定是安全的,有達成要證明的安全目標,而且協定的編寫邏輯是正確的。接著我們再使用Proverif這種協定分析工具來證明我們的協定是不受攻擊,我們也證實了我們協定查詢結果都是True,我們的協定是安全不受攻擊的。最後我們使用OPNET模擬軟體來模擬我們的協定與Fan等人的協定,透過模擬出來的結果可以得到認證時間、吞吐量、頻寬消耗率、排隊延遲等,整體上的模擬結果如預期的比Fan等人的協定還要好,我們的協定能夠在模擬網路環境中實際運用,因此可應用於真實RFID系統認證環境,我們的協定解決了RFID系統上隱私安全的問題。
英文摘要 In order to solve the problem of privacy and security of RFID systems, the use of security authentication protocols is one of the most effective methods to protect RFID systems. Currently, there are many authentication protocols to protect privacy or prevent RFID attacks. Among them, the protocol by Fan et al. can resist common attacks on RFID medical system, but after our analysis, the protocol of Fan et al. will be attacked by eavesdropping, impersonation, tag tracing, tag cloning, tag anonymity, etc. This will cause many dangers to the RFID system. We consider that many people or items in RFID systems use passive low-cost tags. Due to the limited computing and storage capacity of passive tags, the function of tag calculation can't be too complicated and the stored data can't be too big. We also consider that the privacy and security of users can't be attacked by RFID attacks, so we provide lightweight privacy protection protocols to achieve our goals.
In our protocol, we assume that the communication channels between the reader and the server, the reader and the tag are unsafe. Among the tags within the reader's signal coverage, only specific tags interact with the reader.The tags don't exist the collision or have passed the anti-collision processing and using the lightweight functions XCro( ), rotation, XOR and other functions to complete the entire authentication protocol. After analysis, our protocol is more secure than the protocol of Fan et al. Our protocol can successfully resist eavesdropping, impersonation, tag tracing, tag cloning, tag anonymity and other attacks. We use lightweight encryption functions, which are the same as Fan et al.'s protocol. Although our protocol is more than the Fan et al.'s protocol in the storage capacity, it does not affect performance. Our protocol has fewer calculations, communication times, and transmissions than Fan et al.'s protocol in the authentication process. It is best for the protocol to have fewer calculations, fewer steps and security. Our protocol is safer and more effective than Fan et al.'s protocol. After the safety and effectiveness analysis is completed, we use BAN logic to prove the safety and correctness of our lightweight protocol. Finally, we have proved that our protocol is secure, and the writing logic of our protocol is correct. Then we use Proverif to prove that our protocol is free of attacks. We confirmed that our protocol query results are True, and our protocol is safe and free of attacks. Finally, we use OPNET simulation software to simulate our protocol and the protocol of Fan et al. We Can obtain authentication time, throughput, bandwidth consumption rate, queuing delay, etc. through simulation. The overall simulation results show that our protocol is better than the protocol of Fan et al. Our protocol can be used in a simulated network environment, so we believe it can be implemented in a real RFID system authentication environment. Our protocol solves the problems of privacy and security on the RFID systems.
論文目次 目錄
中文摘要------I
英文摘要------II
目錄------IV
圖目錄------VIII
表目錄------XI
第一章、緒論------1
1.1、研究動機------1
1.2、問題描述與解決方案------2
1.3、論文架構------3
第二章、相關研究背景------4
2.1、物聯網------4
2.1.1、物聯網與無線射頻辨識------5
2.2、無線射頻辨識------7
2.2.1、RFID系統元件------8
2.2.2、RFID系統架構------13
2.2.2.1、RFID系統基本運作流程------14
2.2.2.2、RFID系統通訊通道------15
2.2.3、RFID技術應用------16
2.3、RFID國際組織與標準------18
2.3.1、ISO------19
2.3.2、UID------21
2.3.3、EPCglobal------21
2.3.3.1、產品電子編碼(EPC)------23
2.3.4、EPCglobal Class 1 Generation 2標準------25
2.4、基於RFID系統的領域------28
2.4.1、RFID醫療保健系統------28
2.4.1.1、RFID醫療保健安全議題------30
2.4.2、RFID電子護照系統------31
2.4.2.1、RFID電子護照安全議題------32
2.4.3、RFID的攻擊種類------33
2.4.4、RFID系統要求------36
2.5、過去解決的方案------37
2.5.1、過去RFID認證協定與級別------37
2.5.2、Fan等人的協定------39
第三章、提出之新方法------44
3.1、協定初始過程------44
3.1.1、協定初始條件------44
3.1.2、協定符號及運算說明------45
3.1.3、協定初始化------47
3.2、協定運作流程------49
第四章、評估------56
4.1、安全性分析與比較------56
4.1.1、安全性分析------56
4.1.2、安全性分析比較------64
4.2、效能分析與比較------66
4.2.1、效能分析------67
4.2.2、效能分析比較------71
4.3、協定形式化分析與證明------75
4.3.1、BAN Logic介紹------76
4.3.1.1、BAN Logic語法和語義------77
4.3.1.2、BAN Logic推理規則------78
4.3.2、協定理想化模型------80
4.3.3、協定初始化假設------81
4.3.4、協定安全目標------82
4.4、ProVerif證明------88
4.4.1、安全協定自動分析工具ProVerif------88
4.4.1.1、ProVerif語法和語義------90
4.4.2、ProVerif證明結果------91
4.5、OPNET模擬------96
4.5.1、OPNET------96
4.5.1.1、實驗環境------97
4.5.1.2、基於OPNET的認證協定------98
4.5.2、RFID認證協定模型參數設定------98
4.5.3、RFID認證協定網路模型設計------99
4.5.4、RFID認證協定節點模型設計------100
4.5.5、RFID認證協定程序模型設計------102
4.5.6、模擬結果與分析------106
第五章、結論與未來工作------116
參考文獻------119
圖目錄
圖2.1、物聯網三層------5
圖2.2、RFID標籤------8
圖2.3、RFID閱讀器------10
圖2.4、RFID系統架構------14
圖2.5、RFID運作流程------15
圖2.6、RFID系統通訊模型------16
圖2.7、標籤記憶體配置------26
圖2.8、RFID醫療保健系統------30
圖2.9、Fan等人協定符號------40
圖2.10、Fan等人協定索引數據表------40
圖2.11、[42]協定認證協定流程------41
圖3.1、XCro(x,y)算法------47
圖3.2、我們協定認證流程------49
圖4.1、Cro( )函數的Clock數------73
圖4.2、協定計算量------74
圖4.3、BAN Logic分析流程圖------77
圖4.4、ProVerif結構圖------90
圖4.5、ProVerif證明結果之[42]的協定------92
圖4.6、ProVerif證明結果之我們的協定------94
圖4.7、RFID輕量級認證協定網路模型------100
圖4.8、閱讀器節點模型------101
圖4.9、標籤節點模型------101
圖4.10、伺服器節點模型------102
圖4.11、閱讀器端程序模型------103
圖4.12、標籤端程序模型------105
圖4.13、伺服器端程序模型------106
圖4.14、認證時間------108
圖4.15、累積認證時間------108
圖4.16、平均吞吐量------109
圖4.17、累積吞吐量------110
圖4.18、頻寬消耗率------111
圖4.19、排隊延遲------113
圖4.20、累積排隊延遲------113
圖4.21、認證時間(32bits)------114
圖4.22、平均吞吐量(32bits)------114
圖4.23、頻寬消耗率(32bits)------115
圖4.24、排隊延遲(32bits)------115
表目錄
表2.1、RFID標籤與傳統條碼的比較表------7
表2.2、RFID三種不同型態標籤比較------10
表2.3、RFID頻率比較表------11
表2.4、ISO常見的空中介面協定標準------20
表2.5、uCode ID的編碼結構------21
表2.6、EPCglobal所制訂的標籤類別------22
表2.7、EPC編碼模式------24
表3.1、我們協定的符號說明------45
表3.2、閱讀器數據表------48
表3.3、標籤數據表------48
表4.1、RFID認證協定之安全性比較------65
表4.2、RFID認證協定之效能比較------71
表4.3、運算函數的Clock數------73
表4.4、BAN Logic符號表------77
表4.5、ProVerif語法------90
表4.6、ProVerif查詢後結果所代表的意義------95
表4.7、運行環境規格------97
參考文獻 [1]“Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent From 2016”,Egham, U.K., Feb, 2017, [Online].Available: https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
[2]D. Evans, “The Internet of Things: How the next evolution of the Internet is changing everything”, San Jose, CA, USA, Jun. 2011, [online] Available: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_ 0411FINAL.pdf.
[3] M. Frustaci, P. Pace, G. Aloi and G. Fortino, “Evaluating Critical Security Issues of the IoT World: Present and Future Challenges,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2483-2495, Aug. 2018.
[4] K. Fan, Y. Gong, C. Liang, H. Li, Y. Yang, “Lightweight and ultralightweight RFID mutual authentication protocol with cache in the reader for IoT in 5G”, Secur. Commun.Netw., vol. 9, no. 16, pp. 3095-3104, 2016.
[5] Cheng-Ju Li, Li Liu, Shi-Zong Chen, Chi Chen Wu, Chun-Huang Huang and Xin-Mei Chen, “Mobile healthcare service system using RFID,” Proceedings of IEEE International Conference on Networking, Sensing and Control, 2004, Taipei, Taiwan, 2004, pp. 1014-1019 Vol.2
[6]H. Damghani, H. Hosseinian and L. Damghani, “Investigating attacks to improve security and privacy in RFID systems using the security bit method,” Proceedings of 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 833-838.
[7] Walid I. Khedr,“SRFID: A hash-based security scheme for low cost RFID systems,”Egyptian Informatics Journal, Volume 14, Issue 1,2013,Pages 89-98
[8] S. S. Anjum et al., “Energy Management in RFID-Sensor Networks: Taxonomy and Challenges,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 250-266, Feb. 2019.
[9] H. Huang, P. Yu and K. Liu, “A privacy and authentication protocol for mobile RFID system,” Proceedings of 2014 IEEE International Symposium on Independent Computing (ISIC), Orlando, FL, 2014, pp. 1-6.
[10] P. Bernardi, F. Gandino, F. Lamberti, B. Montrucchio, M. Rebaudengo and E. R. Sanchez, “An anti-counterfeit mechanism for the application layer in low-cost RFID devices,” Proceedings of 2008 4th European Conference on Circuits and Systems for Communications, Bucharest, 2008, pp. 227-231.
[11] K. Singh and G. Kaur, “Radio Frequency Identification: Applications and Security Issues,” Proceedings of 2012 Second International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, 2012, pp. 490-494.
[12] C. Chung and I. Peng, “Based on RFID Positioning System with Wireless Medical Care Environment Simulation,” Proceedings of 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 177-180.
[13] Y. Chen, H. Sun and R. Chen, “Design and implementation of wearable RFID tag for real-time ubiquitous medical care,” Proceedings of 2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Newport Beach, CA, 2014, pp. 25-27.
[14] X. Yin, J. Qian, Y. Yang, K. Jin, L. Huangfu and D. Wei, “Medicine-Taking Management System Based on Labview and RFID,” Proceedings of 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC), Dalian, China, 2017, pp. 412-415.
[15] “制定RFID標準的有哪些,它們的區別是什麼?”, Zijing Technology , March, 2017, [online]Available:https://kknews.cc/news/j8eyv46.html
[16] P. K. Singh, N. Kumar and B. K. Gupta, “Radio Frequency Identification (RFID) Standardization: Issues in Pursuit of Global Accomplishment,” Proceedings of 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan Himachal Pradesh, India, 2018, pp. 227-232.
[17] N. Koshizuka and K. Sakamura, “Ubiquitous ID: Standards for Ubiquitous Computing and the Internet of Things,” IEEE Pervasive Computing, vol. 9, no. 4, pp. 98-101, October-December 2010.
[18] “Learning about ucode ”[online]Available: http://www.uidcenter.org/learning-about-ucode
[19]Aman Ullah, “IoT: Applications of RFID and Issues,” International Journal of Internet of Things and Web Services, 3, 2018,pp.1-5
[20] Zhu Xing liang and Xu Shi lian, “Application research of EPC network in reverse logistics,” Proceedings of 2012 International Conference on Information Management, Innovation Management and Industrial Engineering, Sanya, 2012, pp. 369-372.
[21] “EPC radio-frequency identity protocols generation-2 UHF RFID standard”, 2018.
[22] A. Maarof, Z. Labbi, M. Senhadji and M. Belkasmi, “A novel mutual authentication scheme for low-cost RFID systems,” Proceedings of 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, 2016, pp. 240-245.
[23] A. Maarof, M. Senhadji, Z. Labbi and M. Belkasmi, “Authentication protocol conforming to EPC class-1 Gen-2 standard,” Proceedings of 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, 2016, pp. 1-6.
[24] “World Population Aging 2013”, pp. 8-10, 2013.
[25] D. He and S. Zeadally, “An Analysis of RFID Authentication Schemes for Internet of Things in Healthcare Environment Using Elliptic Curve Cryptography,” IEEE Internet of Things Journal, vol. 2, no. 1, pp. 72-83, Feb. 2015.
[26] W. Yao, C. Chu, Z. Li, “The adoption and implementation of RFID technologies in healthcare: A literature review”, J. Med. Syst., vol. 36, no. 6, pp. 3507-3525, 2012.
[27] I. K. Mun, A. B. Kantrowitz, P. W. Carmel, K. P. Mason and D. W. Engels, “Active RFID System Augmented With 2D Barcode for Asset Management in a Hospital Setting,” Proceedings of 2007 IEEE International Conference on RFID, Grapevine, TX, 2007, pp. 205-211.
[28] Jisha S and M. Philip, “Rfid based security platform for internet of things in health care environment,” Proceedings of 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, 2016, pp. 1-3.
[29] M. Safkhani and A. Vasilakos, “A New Secure Authentication Protocol for Telecare Medicine Information System and Smart Campus,” IEEE Access, vol. 7, pp. 23514-23526, 2019.
[30] HealthIT.Gov, “What Are Electronic Health Records (EHRs)? ”May 30, 2018, [online] Available: https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/what-are-electronic-health-records-ehrs
[31] Williams D., Addo I., Ahsan G.M.T., Rahman F., Tamma C., Ahamed S.I. “Privacy in Healthcare,” Privacy in a Digital, Networked World, 2015
[32] M. M. Morshed, A. Atkins and H. Yu, "Privacy and security protection of RFID data in e-passport," 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA) Proceedings, Benevento, 2011, pp. 1-7
[33] N. M. Noor et al., “A study of authentication protocols for security of mobile RFID (M-RFID) system,” Proceedings of 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Putrajaya, 2016, pp. 339-343
[34] Chien-Ming Chen, Shuai-Min Chen, Xinying Zheng, Pei-Yu Chen, and Hung-Min Sun, “A Secure RFID Authentication Protocol Adopting Error Correction Code,” The Scientific World Journal, vol. 2014, Article ID 704623, 12 pages, 2014.
[35] G. Gódor and S. Imre, “Elliptic curve cryptography based authentication protocol for low-cost RFID tags,” Proceedings of 2011 IEEE International Conference on RFID-Technologies and Applications, Sitges, 2011, pp. 386-393.
[36] Wei Xie, Lei Xie, Chen Zhang, Quan Zhang and Chaojing Tang, “Cloud-based RFID authentication,” Proceedings of 2013 IEEE International Conference on RFID (RFID), Penang, 2013, pp. 168-175.
[37] W. Yu and Y. Jiang, “Mobile RFID Mutual Authentication Protocol Based on Hash Function,” Proceedings of 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Nanjing, 2017, pp. 358-361.
[38] Fan Wu,Lili Xu,Saru Kumari,Xiong Li,Ashok KumarDas and Jian Shen, “A lightweight and anonymous RFID tag authentication protocolwith cloud assistance for e‑healthcare applications”, Journal of Ambient Intelligence and Humanized Computing, August 2018, Volume 9, Issue 4, pp 919–930.
[39] Y. Huang and J. Jiang, “An Ultralightweight Mutual Authentication Protocol for EPC C1G2 RFID Tags,” Proceedings of 2012 Fifth International Symposium on Parallel Architectures, Algorithms and Programming, Taipei, 2012, pp. 133-140.
[40] K. Baghery, B. Abdolmaleki, B. Akhbari and M. R. Aref, “Untraceable RFID authentication protocols for EPC compliant tags,” Proceedings of 2015 23rd Iranian Conference on Electrical Engineering, Tehran, 2015, pp. 426-431.
[41] Z. Shi, J. Chen, S. Chen and S. Ren, “A lightweight RFID authentication protocol with confidentiality and anonymity,” Proceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, 2017, pp. 1631-1634.
[42] K. Fan, W. Jiang, H. Li and Y. Yang, “Lightweight RFID Protocol for Medical Privacy Protection in IoT,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1656-1665, April 2018.
[43]Aakanksha Tewari, B. B. Gupta, “Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags”,The Journal of Supercomputing, 2017, Volume 73, Number 3, Page 1085-1102
[44] King-Hang Wang, Chien-Ming Chen, Weicheng Fang, Tsu-Yang Wu, “On the security of a new ultra-lightweight authentication protocol in IoT environment for RFID tags”,The Journal of Supercomputing, 2018, Volume 74, Number 1, Page 65-70
[45]Rurrows M, Abadi M, Needham R. A Logic of Authentication[J]. ACM Transactions on Computer Systems, 1990, 8(1): 18-36.
[46]X. Zhang, Y. Hu, “RFID mutual-authentication protocol with synchronous updated-keys based on hash function”, J. China Univ. Posts Telecommun., vol. 22, no. 6, pp. 27-35, 2015.
[47][online] Available:https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
[48]D. Dolev, A. Yao, “On the security of public key protocols”, IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198-208, Mar. 1983.
[49]Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre, “ProVerif 2.00: Automatic Cryptographic Protocol Verifier,User Manual and Tutoria”,May 16, 2018, [online] Available:https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
[50]F. Marino, G. Massei and L. Paura, “Modeling and performance simulation of EPC Gen2 RFID on OPNET,” Proceedings of 2013 IEEE International Workshop on Measurements & Networking (M&N), Naples, 2013, pp. 83-88.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-03-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-03-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信