淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2702201322512100
中文論文名稱 高油高鹽廚餘堆肥對作物生長之影響
英文論文名稱 Effects of high oil and sodium content in household compost on vegetable growth
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 陳詠裕
研究生英文姓名 Yong-Yu Chen
學號 699480629
學位類別 碩士
語文別 中文
口試日期 2012-01-09
論文頁數 73頁
口試委員 指導教授-李柏青
委員-康世芳
委員-陳孝行
中文關鍵字 廚餘  堆肥  小白菜  Na+/K+比  油脂 
英文關鍵字 Household waste  Compost  Brassica chinesis  Na+/K+ ratio  Lipid 
學科別分類 學科別應用科學環境工程
中文摘要 因各地方風土民情與飲食習慣不同,回收之廚餘特性也不盡相同。在中國料理中,使用大量的食用油與鹽類,導致廚餘中含有高量的油脂(約15%)與鹽類(約1%)。因此本研究藉由4種不同特性的實場堆肥以了解高油高鹽廚餘堆肥化施用於種植作物之影響,藉此探討高油高鹽堆肥的特性與應用。
本試驗以傳統廚餘堆肥(General, G),食品肉類堆肥(Meat, M),傳統廚餘堆肥與已堆肥7個月肉類堆肥做1:1(v:v)混合(General+Meat, GM),肉類堆肥於堆肥初期添加水分(Water, W),共4種特性堆肥共堆肥化261天。以市場常見之小白菜作為盆栽試驗,共栽種三期,分別為第1期栽種時間為2012/6/5至2012/6/27,第2期為2012/7/18至2012/8/9,第3期為2012/9/4至2012/10/4號。
研究結果顯示,4種不同特性堆肥粗脂肪在堆肥化初期(7天內)即大幅降解,平均降解率約為70%,而Na+濃度隨著堆肥化逐漸累積。最終堆肥以TOC、DOC、Phenol、NO3-與NH4+之參數判斷堆肥之成熟狀態,其結果發現,最終之參數雖維持穩定,但由於堆肥經長時間未翻堆,因此判斷為未成熟堆肥。盆栽試驗三期小白菜第1期小白菜存活率不佳外(小於40%),另外2期小白菜存活率約為100%。盆栽土壤的Na+、K+濃度與TOC隨著堆肥期數增加,但栽種之小白菜植體內的Na+與K+濃度並無隨之增加,而TOC可以幫助小白菜抵抗Na+之迫害,並可以持續供給小白菜養分,及調節土壤中pH與EC的變化。本試驗中小白菜Na+/K+比約為0.48(mg/plant),比較市售小白菜與本試驗之小白菜Na+/K+比為0.50(mg/plant),試驗中之小白菜植體中之Na+/K+比與市售小白菜相似。因此試驗中之堆肥,經由混合配比,所栽種之小白菜與市售小白菜之生長與Na+/K+比相似。此試驗中,Na+累積不能作為危害小白菜之依據,適當Na+與K+累積會使小白菜生長良好,因此廚餘堆肥使用上可以經由適當之混合配比(Soil:Compost=7:3, 1:1)及一段時間與農地之間的平衡,方可栽種使用。
英文摘要 As the local culture and daily food vary among areas, the features of kitchen waste for different areas also vary. Cooking oil and salt are used in significant quantity in Chinese cuisine, resulting in the high oil (around 15%) and salt (around 1%) in kitchen waste. Through four types of onsite composting, this study tried to understand the effects on crops from composting kitchen waste with a high level of oil and salt and discussed about the features and application of the compost.
The four types of compost observed in this study were traditional kitchen waste compost (General, G), meat compost (Meat, M), the 1:1 (v:v) mix of traditional kitchen waste compost and 7-month-old meat compost (General+Meat, GM), and meat compost with the addition of water at early stage (Water, W). The four types of compost were composted for a total of 261 days. The experiment was conducted on potted plants of Brassica chinensis, a common vegetable at markets, during three periods of time in 2012. The first period was from June 5thto 27th, the second period was from July 18th to August 9thand the third one was from September 4th to October 4th.
The results showed the lipid in the four types of compost decomposed significantly within the first seven days, the early composting stage, with an average decomposition rate of 70% while the levels of sodium ion in the compost gradually increased. Final compost maturity was determined by the levels of TOC, DOC, Phenol, NO3-and NH4+. Although the final levels in our study were stable, the compost was still determined immature because it hadn’t been turned for a long time. The survival rate was poor in the experiment on potted plants of Brassica chinensis L. in the first period (less than 40%) and the rates for the other two periods were 100%. The later the period was, the higher levels of Na+,K+ and TOC were observed in the soil while the levels of Na+ and K+ in Brassica chinensis didn’t increase in this way. TOC protected Brassica chinensis L. from Na+, continued to support it with nutrition, and regulated pH level and EC change in the soil.
The ratio of Na+/K+ in Brassica chinensis in our study was around 0.48, similar to that (0.5) in Brassica chinensis sold on the market. Therefore, the growth and Na+/K+ ratio were similar for Brassica chinensis grown with the mixed compost in our study and that sold on the market. The accumulation of Na+ didn’t bring damage to the plant in our study, and proper accumulation of Na+ and K+ could assist the growth of plant. Therefore,
kitchen waste compost can be used on crop if mixed at the right proportion (Soil: Compost=7:3, 1:1) and after a period of time to reach a balance with the soil.
論文目次 目錄 I
表目錄 VII
圖目錄 VIII
第一章前言 1
1-1研究背景 1
1-2 研究目的 1
第二章文獻回顧 2
2-1堆肥化 2
2-2國內堆肥現況 3
2-3台灣特性堆肥 6
2-4作物生長 11
第三章實驗材料及方法 13
3-1實驗設備及試劑 13
3-2材料 15
3-2-1堆肥 15
3-2-2盆栽試驗 16
3-3方法 16
3-3-1堆肥及盆栽試驗方法 16
3-3-2堆肥與小白菜分析前處理 17
3-3-3堆肥與小白菜分析方法 18
3-3-4 T-test分析方法 24
第四章結果與討論 25
4-1不同性質堆肥初始之理化特性 25
4-1-1不同性質堆肥之溫度 28
4-1-2不同性質堆肥之pH值 30
4-1-3不同性質堆肥粗脂肪降解分析 31
4-1-4不同性質堆肥Na+, K+, EC消長分析 33
4-1-5不同性質堆肥TOC, DOC, Phenol消長分析 37
4-1-6 TOC, DOC, Phenol濃度比例分析 40
4-1-7 NH4+-N/NO3--N濃度分析 41
4-1-8 DOC/TNW變化 42
4-2盆栽試驗 43
4-2-1盆栽土壤初始參數 43
4-2-2小白菜發芽指數 43
4-2-2不同配比之盆栽土壤參數 44
4-2-3不同配比之盆栽土壤對小白菜存活率及生長大小分析 53
4-2-4不同配比之盆栽土壤與小白菜對Na+,K+吸收之影響分析 55
4-3盆栽土壤與小白菜之相互關係 58
4-3-1小白菜乾濕重關係 58
4-3-2盆栽土壤Na+與K+關係 59
4-3-2盆栽土壤EC對小白菜生長之分析 60
4-3-2盆栽土壤TOC對小白菜生長之分析 62
4-3-2 Na+與K+對小白菜生長之分析 63
第五章結論 67
參考文獻 68

表目錄
表2-1 堆肥處理方式 5
表2-2 台北市不同來源廚餘之營養成分%(乾基) 8
表2-3 台中市廚餘成分分析 9
表2-4 各類堆肥油脂濃度 10
表2-5 各類堆肥鈉濃度 10
表3-1 實驗設備 13
表3-2 實驗試劑 13
表4-1 初期堆肥物理及化學特性 27
表4-2 栽種土壤基本參數 43
表4-3 三期盆栽試驗土壤與初始pH 45

圖目錄
圖3-1現地採樣方位圖 15
圖3-2盆栽試驗土壤採樣示意圖 18
圖4-1四種不同特性堆肥之溫度對堆肥時間關係 29
圖4-2四種不同特性堆肥之pH值對堆肥時間關係 31
圖4-3四種不同特性堆肥之粗脂肪對堆肥時間關係 32
圖4-4四種不同特性堆肥之EC對堆肥時間關係 35
圖4-5四種不同特性堆肥之Na+、K+對堆肥時間關係 36
圖4-6四種不同特性堆肥之DOC、Phenol與TOC對堆肥時間關係 39
圖4-7 G堆肥與M堆肥之NH4+-N / NO3--N對堆肥時間關係 41
圖4-8 G堆肥與M堆肥之DOC/TNW對堆肥時間關係 42
圖4-8小白菜之發芽率 44
圖4-9盆栽試驗三期土壤間隔區、水圈與根圈之EC關係 46
圖4-10盆栽試驗三期土壤間隔區、水圈與根圈之Na+關係 48
圖4-11盆栽試驗三期土壤間隔區、水圈與根圈之K+關係 50
圖4-12 盆栽試驗三期土壤間隔區、水圈與根圈之TOC關係 52
圖4-13盆栽試驗三期小白菜存活率與四種不同配比之關係 54
圖4-14盆栽試驗三期小白菜乾溼重比與四種不同配比之關係 54
圖4-15盆栽試驗三期小白菜Na+與四種不同配比之關係 56
圖4-16盆栽試驗三期小白菜K+與四種不同配比之關係 56
圖4-17盆栽試驗三期小白菜Na+/K+比與四種不同配比之關係 57
圖4-18小白菜乾溼重之相關趨勢 58
圖4-19盆栽土壤Na+對K+之相關趨勢 59
圖4-20盆栽土壤Na+對K+對TOC之相關趨勢 60
圖4-21盆栽土壤Na+對K+對EC之相關趨勢 61
圖4-22盆栽土壤EC對小白菜乾重之相關趨勢 61
圖4-23盆栽土壤TOC對小白菜乾重之相關趨勢 62
圖4-24盆栽土壤TOC對小白菜莖/根比之相關趨勢 63
圖4-25小白菜中Na+對K+之相關趨勢 65
圖4-26盆栽土壤Na+, K+對小白菜Na+, K+之相關趨勢 65
圖4-27小白菜Na+, K+對小白菜乾重之相關趨勢 66
參考文獻 經濟部工業局 (2005),堆肥技術與設備手冊及案例彙編
楊萬發、楊盛行、陳文卿、馬鴻文、鄭正勇 (2002),「廚餘及堆肥成品中有害成分調查、肥力及土壤列管評估計畫」暨「廚餘資源化設施、產品品質標準建制及市場開發近、中程策略規劃」,期末報告
台中市環保局 (2004),「台中市廚餘資源化技術試驗分析及廚餘資源化成品品質標準建制與市場行銷評估計畫」,期末報告
陳文卿、車明道、蔡人傑、梁永瑩、李紀瑩、劉修誠 (2011),提昇廚餘及廢家具回收再利用成效推動計畫,期末報告
林殿琪 (2000),論台灣家庭廚餘堆肥現況與未來發展探討,國立臺灣大學,台北市
蔡書憲 (2003),廚餘堆肥製作及品質之探討,國立臺灣大學,台北市
許芳晴 (2008),油脂成份對食品廢棄物堆肥過程之影響,國立高雄第一科技大學,高雄

Adani, F., Ubbiali, C., Generini, P. (2006) The determination of biological stability of composts using the Dynamic Respiration Index: the results of experience after two years. Waste Manag 26, 41-48.
Abouelwafa, R., Amir, S., Souabi, S., Winterton, P., Ndira, V., Revel, J.C., Hafidi, M. (2008) The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting. Bioresour Technol 99, 6112-6118.
Adhikari, B.K., Barrington, S., Martinez, J., King, S. (2009) Effectiveness of three bulking agents for food waste composting. Waste Manag 29, 197-203.
Apse, M.P., Blumwald, E. (2007) Na+ transport in plants.FEBS Lett 581, 2247-2254.
Barje, F., Amir, S., Winterton, P., Pinelli, E., Merlina, G., Cegarra, J., Revel, J.C., Hafidi, M. (2008) Phospholipid fatty acid analysis to monitor the co-composting process of olive oil mill wastes and organic household refuse. J Hazard Mater 154, 682-687.
Baeta-Hall, L., Ceu Saagua, M., Lourdes Bartolomeu, M., Anselmo, A.M., Fernanda Rosa, M. (2005) Bio-degradation of olive oil husks in composting aerated piles. Bioresour Technol 96, 69-78.
Bernal, M.P., Alburquerque, J.A., Moral, R. (2009) Composting of animal manures and chemical criteria for compost maturity assessment.A review.Bioresour Technol 100, 5444-5453.
Cassaniti, C., Leonardi, C., Flowers, T.J. (2009) The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae 122, 586-593.
Chang, J.I., Chen, Y.J. (2010) Effects of bulking agents on food waste composting. Bioresour Technol 101, 5917-5924.
Cheung, H.N., Huang, G.H., Yu, H. (2010) Microbial-growth inhibition during composting of food waste: effects of organic acids. Bioresour Technol 101, 5925-5934.
Chun J.A., Guo H.H., Yao Y., Wei S., Kai A. (2012) Performance of in-vessel composting of food waste in the presence of coal ash and uric acid. J Hazard Mater 203-204, 38-45.
Cicco, N., Lanorte, M.T., Paraggio, M., Viggiano, M., Lattanzio, V. (2009) A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal 91, 107-110.
Carter, M.R., Gregorich, E.G. (2006) soil sampling and methods of analysis. Taylor & Francis Group.
Grigatti, M., Cavani, L., Ciavatta, C. (2011) The evaluation of stability during the composting of different starting materials: comparison of chemical and biological parameters. Chemosphere 83, 41-48.
Gao, M., Li, B., Yu, A., Liang, F., Yang, L., Sun, Y. (2010) The effect of aeration rate on forced-aeration composting of chicken manure and sawdust. Bioresour Technol 101, 1899-1903.
Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L., Porceddu, P.R. (2012) Co-composting of olive husks with high moisture contents: Organic matter dynamics and compost quality. International Biodeterioration & Biodegradation 67, 8-14.
Grewal, H.S. (2010) Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management 97, 148-156.
Hachicha, R., Hachicha, S., Trabelsi, I., Woodward, S., Mechichi, T. (2009a) Evolution of the fatty fraction during co-composting of olive oil industry wastes with animal manure: maturity assessment of the end product. Chemosphere 75, 1382-1386.
Hachicha, S., Sellami, F., Cegarra, J., Hachicha, R., Drira, N., Medhioub, K., Ammar, E. (2009b) Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter. J Hazard Mater 162, 402-409.
Himanen, M., Hanninen, K. (2011) Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.Bioresour Technol 102, 2842-2852.
Imada, S., Yamanaka, N., Tamai, S. (2009) Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. Journal of Arid Environments 73, 245-251.
Kalemelawa, F., Nishihara, E., Endo, T., Ahmad, Z., Yeasmin, R., Tenywa, M.M., Yamamoto, S. (2012) An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour Technol 126, 375-382.
Keutgen, A.J., Pawelzik, E. (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany 65, 170-176.
Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., Abdelly, C. (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171, 29-37.
Lasaridi, K., Protopapa, I., Kotsou, M., Pilidis, G., Manios, T., Kyriacou, A. (2006) Quality assessment of composts in the Greek market: the need for standards and quality assurance. J Environ Manage 80, 58-65.
Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q. (2011) Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour Technol 102, 9040-9049.
Michailides, M., Christou, G., Akratos, C.S., Tekerlekopoulou, A.G., Vayenas, D.V. (2011) Composting of olive leaves and pomace from a three-phase olive mill plant. International Biodeterioration & Biodegradation 65, 560-564.
Mondini, C., Coleman, K., Whitmore, A.P. (2012) Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agriculture, Ecosystems & Environment 153, 24-32.
Perez-Lopez, U., Robredo, A., Miranda-Apodaca, J., Lacuesta, M., Munoz-Rueda, A., Mena-Petite, A. (2013) Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants. Environmental and Experimental Botany 87, 148-158.
Quintero, J.M., Fournier, J.M., Benlloch, M., Rodriguez-Navarro, A. (2008) Na+ accumulation in root symplast of sunflower plants exposed to moderate salinity is transpiration-dependent. J Plant Physiol 165, 1248-1254.
Raj, D., Antil, R.S. (2011) Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour Technol 102, 2868-2873.
Ruggieri, L., Artola, A., Gea, T., Sanchez, A. (2008) Biodegradation of animal fats in a co-composting process with wastewater sludge. International Biodeterioration & Biodegradation 62, 297-303.
Sellami, F., Jarboui, R., Hachicha, S., Medhioub, K., Ammar, E. (2008) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour Technol 99, 1177-1188.
Stevenson, F., Humus Chemistry. Genesis, Composition, Reactions, John Wiley & Sons, New York, 1982
Shafqat, M.N., Pierzynski, G.M. (2013) Soil test phosphorus dynamics in animal waste amended soils: using P mass balance approach. Chemosphere 90, 691-698.
Szczerba, M.W., Britto, D.T., Kronzucker, H.J. (2009) K+ transport in plants: physiology and molecular biology. J Plant Physiol 166, 447-466.
Sanchez–Monedero, M.A., Roig, A., Cegarra, J., Bernal, M.P. (1999) Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresour Technol 70, 193-201.
Taleisnik, E., Rodriguez, A.A., Bustos, D., Erdei, L., Ortega, L., Senn, M.E. (2009) Leaf expansion in grasses under salt stress. J Plant Physiol 166, 1123-1140.
Veatch-Blohm, M.E., Malinowski, M., Keefer, D. (2012) Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. Scientia Horticulturae 144, 65-73.
Yadav, A., Garg, V.K. (2011) Recycling of organic wastes by employing Eisenia fetida.Bioresour Technol 102, 2874-2880.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-03-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-03-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信