§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2612201609315000
DOI 10.6846/TKU.2017.00956
論文名稱(中文) 負載於碳黑上鈀-鈷奈米合金氧氣還原反應電催化劑之製備與性質分析
論文名稱(英文) Preparation and Characterization of Carbon black Supported Palladium-Cobalt Nanoalloy Electrocatalysts for Oxygen Reduction Reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 鍾弼合
研究生(英文) ZHONG, BI-HE
學號 603400325
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-12-09
論文頁數 55頁
口試委員 指導教授 - 林正嵐(cllin@mail.tku.edu.tw)
委員 - 許世杰(roysos@mail.tku.edu.tw)
委員 - 陳志賢(chschen@fcu.edu.tw)
關鍵字(中) 氧氣還原反應
鈀鈷奈米合金
電催化劑
關鍵字(英) oxygen reduction reaction
palladium-cobalt nanoalloy
electrocatalyst
第三語言關鍵字
學科別分類
中文摘要
本研究為負載於碳黑上鈀-鈷奈米合金氧氣還原反應電催化劑之製備與性質分析,實驗架構主要分為兩部份。
Part 1:使用硼氫化鈉做為還原劑的含浸法製作PdCo奈米合金並負載在碳上,然後在350 oC退火。可以得到四組不同原子比例的催化劑,Pd/C、Pd88Co12/C、Pd76Co24/C、Pd50Co50/C。對製程之電催化劑使用X光繞射分析儀、穿透式電子顯微鏡、化學影像能譜分析儀和動態光散射分析儀測量其表面形態與結構性質分析;並使用旋轉圓盤電極(RDE)進行循環伏安法、線性掃描伏安法,分析電化學活性表面積與ORR效能。PdCo奈米顆粒粒徑為3.9 nm (Pd88Co12/C)到5.5 nm (Pd50Co50/C)之間,PdXCoY/C電催化劑的金屬含量約20 wt%,從電化學測試發現催化活性為Pd88Co12/C > Pd76Co24/C >Pd50Co50/C > Pd/C。
Part 2:別於以往對於PdXCoY/C電催化劑使用熱處理的方式改良其活性,開發新種電化學法氧化處理PdXCoY/C電催化劑並對ORR催化活性進行分析。在鹼性環境下使用定電位氧化PdXCoY/C電催化劑,結果發現電化學法氧化處理PdXCoY/C會造成電催化活性下降,ORR活性也會下降,無法如文獻中熱處理氧化一樣提升ORR活性。
英文摘要
Pd-Co nanoalloy electrocatalysts supported on Vulcan XC-72 carbon black (PdCo/C) for oxygen reduction reaction (ORR) are synthesized and characterization in this study. This study has two part experiments. 
Part 1:PdCo nanoalloys are prepared by impregnation method using sodium borohydride as the reducing agent and then annealed at 350 oC. Electrocatalysts with various Pd:Co atomic ratios of 88:12 (Pd88Co12/C) , 76:24 (Pd76Co24/C) and 50:50 (Pd50Co50/C) are obtained.Pd/C electrocatalyst is also prepared using the same method for comparison.Transmission electron microscope, scanning electron microscopy with energy dispersive spectroscopy and X-ray diffractometer are used to analysis the structure and composition of the electrocatalysts.Electrochemical behaviors and electrocatalytic activity toward ORR of these electrocatalysts are investigated and compared by cyclic voltammetry (CV) and rotating disk electrode (RDE) experiments. The size of the PdCo nanoalloys is ranging from 3.9 nm (Pd88Co12/C) to 5.5 nm (Pd50Co50/C), and the total metal loading of these electrocatalysts is around 20 wt%. Electrochemical active surface area (ECSA) of the electrocatalysts is estimated from CV, and Pd88Co12/C shows a higher ECSA than that of Pd/C. According to the RDE experiments, Pd88Co12/C shows the highest ORR mass activity among all the electrocatalysts prepared in this study, and which is 1.9-fold higher than that of Pd/C. The electron transfer number of ORR on these electrocatalysts is about 4 as estimated by Koutecky-Levich equation. 
Part 2:Develop the new oxidation procedure of PdXCoY / C for different oxidation potentials on ECSA and ORR activity. The PdXCoY / C electrocatalysts are oxidized in alkaline condition by using chronoamperometry. In summuy, electrochemical oxidation of PdXCoY / C are decreased electrocatalytic activity and decreased ORR activity. The ORR activity can not be enhanced as the case of heat treatment oxidation in the literature.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VI
表目錄	VIII
第一章簡介	1
第二章實驗	14
2.1 實驗目的與架構	14
2.2實驗藥品與材料	15
2.3實驗儀器與設備	16
2.4 實驗步驟	16
2.4.1 PdCo電催化劑製備含浸法前置步驟	16
2.4.2 PdCo電催化劑含浸法還原合成步驟	17
2.4.3 PdCo電催化劑燒結合金化步驟	17
2.5 表面性質分析及其樣品製備	19
2.5.1 X光繞射分析儀 (X-ray diffractometer, XRD)	19
2.5.2穿透式電子顯微鏡 (transmission electron microscope, TEM)	19
2.5.3掃描式電子顯微鏡附表面能量散射X光光譜儀 (scanning electron microscope energy dispersive X-ray spectroscopy, SEM-EDS)	20
2.6 電化學分析	20
2.6.1 電化學分析前置準備	20
2.6.2 循環伏安法 (cycle voltammetry, CV)	21
2.6.3 計時安培法 (chronoamperometry, CA)	23
2.6.4線性掃描伏安法 (linear sweep voltammetry, LSV)	24
2.6.4-1 Koutecky-Levich圖譜 (Koutecky-Levich plot, K-L plot)	25
第三章PdXCoY/C電催化劑之比較	26
3.1 SEM-EDS元素分析	26
3.2 XRD晶型結構分析	27
3.3 TEM表面型態與結構之分析	29
3.4 CV分析	31
3.5 ORR效能	32
3.6 ORR轉移電子數	34
第四章PdXCoY/C電催化劑之電化學改質與性質檢測	36
4.1 PdXCoY/C氧化前處理狀態分析	36
4.2 PdXCoY/C氧化前處理後比較	39
4.2.1 ECSA比較	39
4.2.2 ORR比較	40
4.3 Pd50Co50/C氧化前處理在鹼性環境下CV與ORR比較	42
第五章結論	44
參考文獻	45
附錄	48
A. Pt/C與PdXCoY/C電催化劑之ORR轉移電子數	48
B. Pd/C與Pd50Co50/C氧化前處理CV比較	49
C. Pd/C與Pd50Co50/C氧化前處理ORR比較	52
D. Pd75Co25/C-SiO2電化學性質分析	54
D-1 Pd75Co25/C-SiO2製備步驟	54

圖目錄
圖1-1、PEMFC之構造示意圖。	2
圖1-2、不同金屬的氧氣還原活性對氧鍵結能做圖。	3
圖1-3、Pt/C、Pd/C與Pd65Co35/C的Koutecky–Levich圖譜。	4
圖1-4、(A)Pt/C (B)Pd4Co/C-350 在有無甲醇電解液下的CV圖譜。	5
圖1-5、Pt/C與Pd4Co/C在有無甲醇電解液下的ORR圖譜。	6
圖1-6、Pd70Co30/C在不同燒結溫度(e)non (f)300 oC (g)500 oC (h)700 oC下TEM圖。	7
圖1-7、Pd50Co50/C在不同燒結溫度下的HRPD圖。	8
圖1-8、(A)Pd70Co30/C在不同燒結溫度下ORR圖,(B)不同原子比PdXCoY/C的ORR圖。	8
圖1-9、氧化熱處理溫度對ORR活性與Pd DSO影響圖。	9
圖1-10、PdCo奈米合金表面氧化熱處理後提升ORR反應活性模型。	9
圖1-2、Co金屬的pH-電位電化學相圖[19]。	11
圖1-3、Pd金屬的pH-電位電化學[19]。	11
圖2-1、實驗架構及流程圖。	14
圖2-2、含浸法之實驗步驟流程圖。	18
圖2-3、RDE三電極式電化學系統簡示圖。	21
圖2-4、Pd50Co50/C電催化劑在0.5 M H2SO4下的CV圖。	22
圖2-5、	23
圖2-6、Pd50Co50/C電催化劑在0.5 M H2SO4 (O2 saturated)電解液之LSV圖。	24
圖2-7、Pt/C電催化劑的Koutecky-Levich圖譜。	25
圖3-1、PdXCoY/C系列電催化劑之XRD分析圖譜。	28
圖3-2、PdXCoY/C系列電催化劑合金化觀察之XRD圖譜。	28
圖3-3、(A)Pd/C、(B) Pd88Co12/C(C)Pd76Co24/C與(D) Pd50Co50/C電催化劑之TEM影像及粒徑分析。	30
圖3-4、PdXCoY/C系列之電催化劑在0.5 M H2SO4水溶液中之CV圖。	31
圖3-5、PdXCoY/C系列電催化劑之LSV圖。	33
圖3-6、Pt/C與PdXCoY/C系列電催化劑的Koutecky-Levich圖譜。	35
圖4-1、Pd/C的電化學氧化前處理圖譜。	37
圖4-2、Pd50Co50/C的電化學氧化前處理圖譜。	37
圖4-3、Pd/C與Pd50Co50/C在buffer pH10下的CV圖譜。	38
圖4-4、Pd/C與Pd50Co50/C的電化學氧化前處理電流值圖。	38
圖4-5、Pd/C與Pd50Co50/C的電化學氧化前處理ECSA數據比較圖。	39
圖4-6、Pd/C與Pd50Co50/C的電化學氧化前處理半波電位數據比較圖。	40
圖4-7、Pd/C與Pd50Co50/C的電化學氧化前處理Mass Activity數據比較圖。	41
圖4-8、Pd/C與Pd50Co50/C的電化學氧化前處理	41
圖4-9、Pd50Co50/C電催化劑在不同氧化前處理電位下之鹼性環境CV圖。	42
圖A-1、(A)Pt/C (B)Pd/C (C)Pd88Co12/C (D)Pd76Co24/C (E)Pd50Co50/C之不同轉速的ORR反應LSV曲線圖。	49
圖B-1、Pd/C電催化劑在不同氧化前處理電位(A)+0.8 V (B)+0.6 V(C)+0.4 V(D)+0.2 V(E)0.0 V(F)-0.2 V(G)-0.4 V(H)-0.6 V之CV圖。	50
圖B-2、Pd50Co50/C電催化劑在不同氧化前處理電位(A)+0.8 V (B)+0.6 V(C)+0.4 V(D)+0.2 V(E)0.0 V(F)-0.2 V(G)-0.4 V(H)-0.6 V之CV圖。	51
圖C-1、Pd/C電催化劑在不同氧化前處理電位(A)+0.8 V (B)+0.6 V(C)+0.4 V(D)+0.2 V(E)0.0 V(F)-0.2 V(G)-0.4 V(H)-0.6 V之ORR圖。	53
圖C-2、Pd50Co50/C電催化劑在不同氧化前處理電位(A)+0.8 V (B)+0.6 V(C)+0.4 V(D)+0.2 V(E)0.0 V(F)-0.2 V(G)-0.4 V(H)-0.6 V之ORR圖。	54
圖D-1、Pd75Co25/C-SiO2的(A)CV圖譜 (B)ECSA比較 (C)ORR圖譜 (D) Mass Activity比較。	55

表目錄
表1-1、PdCo/C催化劑熱處理改良並應用於ORR的相關文獻。	12
表1-2、PdCo/C催化劑其他改良方式並應用於ORR的相關文獻。	13
表2-1、不同原子比製作的PdXCoY/C系列電催化劑所對應的(NH4)2PdCl4.4H2O與CoCl2.6H2O之實際克數。	18
表3-1、PdXCoY/C系列電催化劑之EDS元素分析表。	26
表3-2、PdXCoY/C系列電催化劑之XRD分析結果。	27
表3-3、PdXCoY/C系列電催化劑中Pt顆粒之平均粒徑。	29
表3-4、PdXCoY/C系列之電催化劑之CV性質參數。	32
表3-5、PdXCoY/C系列電催化劑之ORR效能比較。	33
表3-6、Pt/C與PdXCoY/C系列電催化劑進行ORR反應之轉移電子數(n)。	35
參考文獻
參考文獻
 
[1]	S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of different fuel cell technologies," Renewable and Sustainable Energy Reviews 16 ,2012, 981-989.
[2]	C. Song and J. Zhang, "Electrocatalytic oxygen reduction reaction," Springer, 2008, 89-134.
[3]	K. Oishi and O. Savadogo, "Correlation between the physico-chemical properties and the oxygen reduction reaction electro catalytic activity in acid medium of Pd–Co alloys synthesized by ultrasonic spray method," Electrochimica Acta 98, 2013, 225-238.
[4]	H. Liu and A. Manthiram, "Controlled synthesis and characterization of carbon-supported Pd 4 Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells," Energy & Environmental Science 2, 2009, 124-132.
[5]	X. Li, Q. Huang, Z. Zou, B. Xia, and H. Yang, "Low temperature preparation of carbon-supported Pd Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction," Electrochimica Acta 53, 2008, 6662-6667.
[6]	D.-S. Kim, J.-H. Kim, I.-K. Jeong, J. K. Choi, and Y.-T. Kim, "Phase change of bimetallic PdCo electrocatalysts caused by different heat-treatment temperatures: Effect on oxygen reduction reaction activity," Journal of catalysis 290, 2012, 65-78.
[7]	Y.-C. Wei, C.-W. Liu, H.-W. Lee, S.-R. Chung, S.-L. Lee, T.-S. Chan,J.-F. Lee, K.-W. Wang, "Synergistic effect of Co alloying and surface oxidation on oxygen reduction reaction performance for the Pd electrocatalysts," international journal of hydrogen energy 36, 2011, 3789-3802.
[8]	Q. Wu, Z. Rao, L. Yuan, L. Jiang, G. Sun, J. Ruan, Z. Zhou, S. Sang, "Carbon supported PdO with improved activity and stability for oxygen reduction reaction in alkaline solution," Electrochimica Acta 150, 2014, 157-166.
[9]	H. Liu, W. Li, and A. Manthiram, "Factors influencing the electrocatalytic activity of Pd 100− x Co x (0≤ x≤ 50) nanoalloys for oxygen reduction reaction in fuel cells," Applied Catalysis B: Environmental 90, 2009, 184-194.
[10]	R. Rahul, R. Singh, and M. Neergat, "Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd–Co alloy catalysts," Journal of Electroanalytical Chemistry 712, 2014, 223-229.
[11]	N. Alexeyeva, A. Sarapuu, K. Tammeveski, F. Vidal-Iglesias, J. Solla-Gullón, and J. Feliu, "Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions," Electrochimica Acta 56, 2011, 6702-6708.
[12]	J. Mora-Hernández, A. Ezeta-Mejía, C. Reza-San Germán, S. Citalán-Cigarroa, and E. M. Arce-Estrada, "Electrochemical activity towards ORR of mechanically alloyed PdCo supported on Vulcan carbon and carbon nanospheres," Journal of Applied Electrochemistr 44, 2014, 1307-1315.
[13]	C. S. Sharma, R. Awasthi, R. N. Singh, and A. S. K. Sinha, "Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction," Electrochimica Acta 136, 2014, 166-175.
[14]	M. Yun, M. S. Ahmed, and S. Jeon, "Thiolated graphene oxide-supported palladium cobalt alloyed nanoparticles as high performance electrocatalyst for oxygen reduction reaction," Journal of Power Sources 293, 2015, 380-387.
[15]	K. R. Lee and S. I. Woo, "Promoting effect of Ni on PdCo alloy supported on carbon for electrochemical oxygen reduction reaction," Catalysis Today 232, 2014, 171-174.
[16]	J. Ryu, J. Choi, D.-H. Lim, H.-L. Seo, S.-Y. Lee, Y. Sohn, J. Park, J. Jang,H.-J. Kim, S. Hong, P. Kim, S. Yoo, "Morphology-controlled synthesis of ternary Pt–Pd–Cu alloy nanoparticles for efficient electrocatalytic oxygen reduction reactions," Applied Catalysis B: Environmental 174, 2015, 526-532.
[17]	Q. Tang, L. Jiang, Q. Jiang, S. Wang, and G. Sun, "Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction," Electrochimica Acta 77, 2012, 104-110.
[18]	P. Pan and N. J. Susak, "The kinetics of CoO dissolution in acidic aqueous solutions under surface conditions," Geochemical Journal 23, 1989, 1-10.
[19]	M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," Houston, Tex. : National Association of Corrosion Engineers, 1974.
[20]	L. Liu, G. Samjeske, S.-i. Nagamatsu, O. Sekizawa, K. Nagasawa, S. Takao, Y. Imaizumi, T. Yamamoto, T. Uruga, Y. Iwasawa, "Dependences of the Oxygen Reduction Reaction Activity of Pd–Co/C and Pd–Ni/C Alloy Electrocatalysts on the Nanoparticle Size and Lattice Constant," Topics in Catalysis 57, 2014, 595-606.
[21]	D. Wang, H. L. Xin, H. Wang, Y. Yu, E. Rus, D. A. Muller, F. J. DiSalvo, H. D. Abruña, "Facile synthesis of carbon-supported Pd–Co core–shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability with monolayer Pt decoration," Chemistry of Materials 24, 2012, 2274-2281.
[22]	C.-C. Chen, C.-L. Lin, and L.-C. Chen, "Functionalized carbon nanomaterial supported palladium nano-catalysts for electrocatalytic glucose oxidation reaction," Electrochimica Acta 152, 2015, 408-416.
[23]	H. Erikson, A. Sarapuu, N. Alexeyeva, K. Tammeveski, J. Solla-Gullón, and J. Feliu, "Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions," Electrochimica Acta 59, 2012, 329-335.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信