淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2612200813574900
中文論文名稱 陰離子在電化學處理含重金屬廢水程序之影響研究
英文論文名稱 Effect of Anions on Electrochemical Coagulation for Cadmium Removal
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 1
出版年 98
研究生中文姓名 黃建宏
研究生英文姓名 Chien-Hung Huang
學號 891330010
學位類別 博士
語文別 中文
口試日期 2008-12-18
論文頁數 88頁
口試委員 指導教授-陳俊成
委員-章裕民
委員-陳俊成
委員-李奇旺
委員-章日行
委員-李柏青
中文關鍵字 電化學混凝  硫酸鹽  硝酸鹽  氯鹽  陽極溶解   
英文關鍵字 Electrochemical coagulation  Sulfate  Nitrate  Chloride  Anodic dissolution  Cadmium 
學科別分類
中文摘要 為使含重金屬過量之有害事業廢棄物降低其含量以通過TCLP測試成為一般事業廢棄物以降低其處置成本,研究者經常使用稀釋過後之硝酸、硫酸及鹽酸來萃取重金屬。而其萃取液與其他含重金屬之廢水問題相同需要加以妥善處裡,而電化學混凝法為常被選用之處理技術。故本研究以硝酸根離子(NO3-)、硫酸根離子(SO42-)及氯離子(Cl-)為對象,分別及混合調配水溶液,以金屬鋁為陽極、石墨為陰極,探討陰離子對電化學混凝程序中陽極腐蝕、電流、電流效率、導電度、溶液pH變化、膠羽形成及重金屬鎘移除之影響。

在固定電壓6伏特、反應時間10分鐘的操作條件下,實驗結果顯示,硝酸根離子能令電解槽維持穩定之電流,故於陽極溶出鋁離子、於陰極分解水並使溶液pH上升,但由於pH上升過高,導致Al(OH)4-成為主要物種,故無法觀察到膠羽。在硫酸鹽溶液中,由於陽極鋁板表面迅速形成惰性氧化層導致電解槽幾乎無電流產生,故亦無電混凝反應產生。在氯化鈉溶液中,氯離子提供較高之導電度並令電解槽維持相對較高之電流,鋁離子溶出、溶液pH隨時間呈現先升高後下降然後維持在9〜10之間,故可形成並觀察到明顯之氫氧化鋁膠羽、產生之膠羽將鎘從溶液中有效混凝移除。當硝酸鹽及硫酸鹽混合存在於溶液中,少量之硝酸根離子即可主導硫酸鹽溶液之電化學程序,雖然並無膠羽形成以產生混凝作用但經由鎘之還原程序可將溶液中約50%之鎘移除。當硫酸鹽溶液中存在微量之氯鹽時,氯離子即可穿透鋁板之惰性氧化層而導致電解槽電流明顯產生,此時溶液中之鎘於先於陰極被還原並接續由產生之膠羽所混凝移除,這個機制對鎘之移除相當有效,在反應之10分鐘內可移除超過99.5%之鎘。
英文摘要 Solutions of nitrate, sulfate, chloride and their combination were prepared and tested in a parallel plate electrochemical cell to study their effect on electrochemical process. Among the parameters studied were conductivity, current, current efficiency, pH change, coagulant formation, and cadmium removal. Nitrate ions were able to sustain a healthy current in the cell. The current dissolved aluminum from the anode, dissociated water molecules on the cathode, and increased pH in the solution. Due to excessive pH, Al(OH)4- became the dominating species and therefore no coagulant was observed. In sodium sulfate solutions, the aluminum anode quickly built up an inert film that prevented current from crossing the cell. Due to the lack of current, no reaction was observed throughout the 10-min treatment. In sodium chloride solutions, chloride ions provided electrolytic conductivity to sustain a current in the cell. The current dissolved aluminum, generated hydroxyl groups, increased pH, produced coagulant, and removed cadmium from the solution.

In nitrate-sulfate mixtures, a small amount of nitrate ions dominated the performance of the sulfate solution in an electrochemical process. Although no coagulant was produced, the process removed 50% of the cadmium from the solution through cathodic reduction. In a solution of both sulfate and chloride, chloride ions were able to penetrate the inert film formed in a sulfate solution and drew a healthy current across the cell. Cadmium was initially removed by cathodic reduction followed by coagulation. This mechanism was very effective in cadmium removal. A 10-min treatment removed more than 99.5% of the cadmium, even with a substantial amount of sulfate in the solution.
論文目次 目 錄(i)
表目錄(iii)
圖目錄(iv)
第一章 前言(1)
1.1研究緣起(1)
1.2研究目的(3)
第二章 文獻回顧(5)
2.1電化學技術於廢水處理上之應用(5)
2.2電化學混凝技術之理論(8)
2.2.1電解原理(8)
2.2.2電化學混凝原理及程序(9)
2.2.3電極化學反應(10)
2.2.4法拉第定律及電流效率(14)
2.3電極腐蝕與極化現象(16)
2.3.1腐蝕(16)
2.3.2鈍化(21)
2.3.3過電位與極化現象(24)
2.4重金屬廢水之處理方式(26)
2.5鎘之危害及電化學處理(30)
第三章 實驗(33)
3.1實驗構想(33)
3.2實驗材料及設備(35)
3.3實驗方法(38)
第四章 結果與討論(41)
4.1陰離子之電化學行為(41)
4.1.1導電度(44)
4.1.2硝酸鹽(48)
4.1.3硫酸鹽(53)
4.1.4氯鹽(58)
4.1.5綜合比較(61)
4.2混合陰離子及其濃度對電混凝程序之影響(67)
4.2.1硫酸鹽-硝酸鹽(67)
4.2.2硝酸鹽-氯鹽(69)
4.2.3硫酸鹽-氯鹽(70)
4.3重金屬鎘之移除(73)
第五章 結論(81)
參考文獻(83)

表目錄

表3-1第一階段實驗,溶液中陰離子單獨存在之濃度配置(39)
表3-2 第二階段實驗,溶液中陰離子混合存在之濃度配置(39)
表3-3 第三階段實驗,添加重金屬鎘與陰離子之濃度配置(39)
表4-1 第一階段電化學混凝實驗結果摘要表,陽極為鋁板(42)
表4-2 第一階段電化學混凝實驗結果摘要表,陽極更改為石磨板(44)
表4-3 鋁之水解產物與平衡常數(52)

圖目錄

圖2-1 電極佈置,monopolar方式(7)
圖2-2 電極佈置,bipolar方式(7)
圖2-3基本電解現象圖(9)
圖2-4 簡易電混凝反應示意圖(12)
圖2-5 腐蝕的型態(19)
圖2-6 金屬在海水中的局部催化腐蝕行為造成的孔蝕(21)
圖2-7極化曲線(24)
圖3-1 實驗設置系統示意圖(37)
圖3-2 實驗設置系統照片(38)
圖4-1 不同濃度NaNO3水溶液,導電度與反應時間之關係(45)
圖4-2 不同濃度Na2SO4水溶液,導電度與反應時間之關係(45)
圖4-3 不同濃度NaCl水溶液,導電度與反應時間之關係(46)
圖4-4 NaCl、HNO3、H2SO4水溶液導電度與濃度關係(48)
圖4-5 NaNO3水溶液,電流與反應時間之關係(49)
圖4-6 NaNO3水溶液,pH與反應時間之關係(49)
圖4-7 NaNO3水溶液,濁度與反應時間之關係(52)
圖4-8 鋁之溶解度與pH平衡圖(53)
圖 4-9 Na2SO4水溶液,電流與反應時間之關係(54)
圖4-10 Na2SO4水溶液,pH與反應時間之關係(57)
圖4-11 Na2SO4水溶液,濁度與反應時間之關係(57)
圖4-12 NaCl水溶液,電流與反應時間之關係(58)
圖4-13 NaCl水溶液,pH與反應時間之關係(60)
圖4-14 NaCl水溶液,濁度與反應時間之關係(61)
圖4-15不同濃度NaCl、NaNO3及Na2SO4溶液之電流產生情形(64)
圖4-16 0.05 N Na2SO4、NaCl及NaNO3溶液之pH變化(65)
圖4-17 0.05 N Na2SO4、NaCl及NaNO3溶液之膠羽產生情形(66)
圖4-18 0.05 N Na2SO4溶液加入不同濃度NaNO3,電流變化情形(68)
圖4-19 0.05 N Na2SO4溶液加入不同濃度NaNO3,pH變化情形(69)
圖4-20 0.05N NaNO3溶液加入1 mN NaCl之電混凝實驗結果,並與未添加NaCl前之實數據進行比較(70)
圖4-21 0.05 N Na2SO4溶液加入1 mN NaCl,導電度與電流變化情 形(71)
圖4-22 0.05 N Na2SO4溶液加入1 mN NaCl,pH變化與膠羽形成情形(72)
圖4-23 含0.01N Na2SO4、2.4 mN NO3-、20 mg/L Cd溶液,電混凝實驗結果 (A) pH、導電度、電流 (B) Cd濃度變化、膠羽形成(77)
圖4-24含0.01N NaCl、2.4 mN NO3-、20 mg/L Cd溶液,電混凝實驗結果 (A) pH、導電度、電流 (B) Cd濃度變化、膠羽形成(78)
圖4-25含0.05N NaCl、2.4 mN NO3-、20 mg/L Cd溶液,電混凝實驗結果 (A) pH、導電度、電流 (B) Cd濃度變化、膠羽形成(79)
圖4-26含0.1N Na2SO4、0.01N NaCl、2.4 mN NO3-、20 mg/L Cd溶液,電混凝實驗結果(A) pH、導電度、電流 (B) Cd濃度變化、膠羽形成(80)
參考文獻 1.C.-L. Yang, Z. Kravets, Removal of cadmium in leachate from waste alumina beads using electrochemical technology, Chem. Eng. Comm. 189 (2002) 827-848.
2.黃建宏,不同來源及經高溫、水洗前處理之都市垃圾焚化飛灰固化體性能比較,碩士論文(1995),國立中山大學環境工程研究所。
3.G.C.C Yang, C.M. Tsai, A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash, J. Haz. Mat. 58 (1998) 103-120.
4.J. Jiang, J. Wang, X. Xu, W. Wang, Z. Zhou, Y. Zhang, Heavy metal stabilization in municipal solid waste incineration flyash using heavy metal chelating agents, J. Haz. Mat. B113 (2004) 141-146.
5.A.J. Pedersen, L.M. Ottosen, A. Villumsen, Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent, J. Haz. Mat. B122 (2005) 103-109.
6.Y. Gong, D.W. KirK, Behaviour of municipal solid waste incinerator flyash I: General leaching study, J. Haz. Mat. 36 (1994) 249-264.
7.S. Nagib, K. Inoue, Recovery of lead and zinc from fly ash generated from municipal incinerator plants by means of acid and/or alkaline leaching, Hydrometallurgy 56 (2000) 269-292.
8.X. Wan, W. Wang, T. Ye, Y. Guo, X. Gao, A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure, J. Haz. Mat. B134 (2006) 197-201.
9.N. Meunier, P. Drogui, C. Montane, R. Hausler, J.-F. Blais, G. Mercier, Heavy metal removal from acidic and saline soil leachate using either electrochemical coagulation or chemical precipitation, J. Environ. Eng. ( 2006) 545-554.
10.L. Chen, F.-H. Tseng, C.-L. Yang, Adsorption of organic dyes by electrochemically generated iron-based sorbents, 100th AWMA Annual Conference, Pittsburgh, PA, 26-29 June, 2007.
11.C.-L. Yang, Electrochemical coagulation for oil water demulsification, Separ. Purif. Technol. 54 (2007) 388-395.
12.C.-H. Ho and C.-L. Yang, Electrochemical Oxidation of reactive blue 19 in aqueous solutions, 101 st AWMA Annual Conference, Potland, OR, 26-29 June, 2008.
13.L.J.J. Janssen and L. Koene, The role of electrochemistry and electrochemical technologies in environmental protection, Chemical Engineering Journal 85 (2002) 137-146.
14.G. Chen, Electrochemical technology in wastewater treatment, Separ. Purif. Technol. 38 (2004) 11-41.
15.S.H. Lin and C.L. Wu, Electrochemical removal of nitrite and ammonia for aquaculture, Wat. Res. 30 (1996) 715-721.
16.P. Cañizares, B. Louhichi, A. Gadri, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, Electrochemical treatment of the pollution generated in an ink-manufacturing process, J. Haz. Mat. 146 (2007) 552-557.
17.W. Simka, J. Piotrowski, G. Naerat, Influence of anode material on electrochemical decomposition of urea, Electrochimica Acta 52 (2007) 5696-5703.
18.L. szpyrkowicz, C. Juzzolino, S. N. Kaul, A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent, Wat. Res. 35 (2001) 2129-2136.
19.S. Yuan, M. Tian, Y. Cui, L. Lin, X. Lu, Treatment of nitrophenols by cathode reduction and electro-fenton methods, J. Haz. Mat. B137 (2006) 573-580.
20.Z. Qiang, J.-H. Chang, C.-P. Huang, Electrochemical regeneration of Fe2+ in fenton oxidation processes, Wat. Res. 37 (2003) 1308-1319.
21.A.F. Martins, M.L. Wilde, T.G. Vasconcelos, D.M. Henriques, NonyLpolyethoxylate degradation by means of electrocoagulation and electrochemical fenton, Separ. Purif. Technol. 50 (2006) 249-255.
22.M. Arienzo, Remediation of metal-contaminated aqueous systems by electrochemical peroxidation: an experiment investigation, J. Haz. Mat. B87 (2001) 187-198.
23.M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation(EC)—science and applications, J. Haz. Mat. B84 (2001) 29-41.
24.Monk, P., Fundamentals of Electroanalytical Chemistry, John Wiley & Sons, New York (2001).
25.M.Y.A. Mollah, P. Morkovsky, J.A. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Haz. Mat. B114 (2004) 199-210.
26.楊萬發,水及廢水處理化學,國立編譯館主編,茂昌圖書有限公司發行(1992)。
27.張晉,水處理工程與設計,鼎茂圖書出版有限公司出版(1995)。
28.J.-Q. Jiang, N. Graham, C.H. Kelsall, N. Brandon, Laboratory study of electro-coagulation-flotation for water treatment, Wat. Res. 36 (2002) 4064-4078.
29.C.Y. Hu, S.L. Lo, W.H. Kuan, Effects of co-existing anions on Fluoride removal in electrocoagulation(EC) process using aluminum electrodes, Wat. Res. 37 (2003) 4513-4523.
30.腐蝕控制,鮮祺振編譯,徐氏基金會出版(1998)。
31.楊進義,鈹中和劑與鍶、銻改良劑對A357鋁合金微結構及性質之影響,博士論文(1996),國立中央大學機械工程研究所。
32.孫稟厚,鋁鈧合金在3.5% NaCl溶液中腐蝕性質之研究,碩士論文(2007),中華大學機械與航太工程研究所。
33.彭國強,鐵-9鋁-28錳-0.9碳-6鉻合金氧化膜生成之研究,碩士論文(2002),國立屏東科技大學機械工程系。
34.林青嫺,鋁與鈷-鉻合金陽極氧化膜的成長及耐腐蝕性之研究,碩士論文(2004),清雲科技大學機械工程研究所。
35.周志豪,利用超音波與電化學法處理螯合性含銅廢水,碩士論文(2005),朝陽科技大學環境工程與管理系。
36.蔡明谷,研究電透析技術處理重金屬廢水之效率及其物化機制-以含銅廢水為例,碩士論文(2006),朝陽科技大學環境工程與管理系。
37.吳明晃,以化學置換程序處理水溶液中含鎘、汞離子之研究,碩士論文(2000),國立台灣大學化學工程系。
38.陳文吉,聚電解質加強超過濾移除水中重金屬之研究,碩士論文(2001),國立屏東科技大學環境工程與科學系。
39.陳松柏,以超臨界二氧化碳萃取法分離水中重金屬離子,碩士論文(2001),國立台灣大學化學工程系。
40.李旺達,以真菌Aspergillus terreus吸附水中重金屬離子之研究,碩士論文(2005),國立高雄應用科技大學化學工程系。
41.E. Bazrafshan, A.H. Nasseri, A.R. Mesdaghinia, F. Vaezi, S. Nazmara, Removal of cadmium from industrial effluents by electrocoagulation process using iron electrodes, Iran. J. Health. Sci. Eng. 3 (4) ( 2006) 261-266.
42.WHO, Guidelines for drinking-water quality Vol.2, Belgium, Macmillan. (1984).
43.WHO, Cadmium in drinking water. Bacground document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization (WHO/SDE/WSH/03.04/80).
44.K. Rajeshwar, J. Ibanez, Environmental Chemistry, Academic Press, New York, 1997.
45.C. Escobar, C.S. Salazar, M.I. Toral, Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in nature waters and simulated wastewater, J. Environ. Manag. 81 (2006) 384-391.
46.P. Canizares, M. Carmona, J. Lobato, F. Martinez, M.A. Rodrigo, Electrodissolution of Aluminum Electrodes in Electrocoagulation Process, Ind. Eng. Chem. Res. 44 (2005) 4178-4185.
47.S.-I. Pyun, S.-M. Moon, S.-H Ahn, S.-S. Kim, Effects of Cl-, NO3- and SO42- ions on anodic dissolution of pure aluminum in alkaline solution, Corros. Sci. 49 (1999) 653-667.
48.K.-H. Na, S.-I. Pyun, Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution, Corros. Sci. 49 (2007) 2663-2675.
49.A. M. Beccaria, G. Poggi, Aluminum corrosion in slightly alkaline sodium sulfate solutions at different hydrostatic pressures, Corrosion 43 (1987) 153-158.
50.A. Kolics, J.C. Polkinghorne, A. Wieckowski, Adsorpotion of sulfate and chloride ions on aluminum, Electrochimica Acta 43 (18) (1998) 2605-2618.
51.R. T. Foley, Localized corrosion of aluminum alloys-a review, Corrosion 42 (1986) 277-288.
52.D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Blackie Academic and Professional, London, UK, 1993.
53.A.S. Koparal, U.B. Ogutveren, Removal of nitrate from water by electroreduction and electrocoagulation, J. Haz. Mat. B89 (2002) 83-94.
54.M.R. Peterson, Electrodisinfection of Municipal Wasterwater Effluent, M.S. thesis, University of New Orleans, LA, 2005.
55.C.-L. Yang, J. McGarranhan, Electrochemical coagulation for textile effluent decolorization, J. Haz. Mat. 127 (2005) 40-47.
56.C-L. Yang, R. Dluhy, Electrochemical generation of aluminum sorbent for fluoride adsorpotion, J. Haz. Mat. B94 (3) (2002) 239-252.
57.M. Abda, Y. Oren, Removal of cadmium and associated contaminants from aqueous wastes by fibrous carbon electrodes, Wat. Res. 27 (10) (1993) 1535-1544.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-01-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-01-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信