淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2612200611590900
中文論文名稱 考慮非即時退化性物品的一些確定性存貨模式之研究
英文論文名稱 A STUDY OF SOME DETERMINISTIC INVENTORY MODELS WITH NON-INSTANTANEOUS DETERIOATING ITEMS
校院名稱 淡江大學
系所名稱(中) 管理科學研究所博士班
系所名稱(英) Graduate Institute of Management Science
學年度 95
學期 1
出版年 96
研究生中文姓名 楊志德
研究生英文姓名 Chih-Te Yang
學號 891560095
學位類別 博士
語文別 中文
口試日期 2006-12-16
論文頁數 108頁
口試委員 指導教授-歐陽良裕
指導教授-吳坤山
委員-林進財
委員-陳山火
委員-莊忠柱
委員-陳坤盛
委員-黃文濤
委員-婁國仁
委員-歐陽良裕
中文關鍵字 存貨  非即時退化  存貨依存性需求  數量折扣  延遲付款 
英文關鍵字 Inventory  Non-instantaneous deterioration  Stock-dependent demand  Quantity discount  Permissible delay in payments 
學科別分類
中文摘要 在存貨系統中,大多數的物品於持有過程中都會有退化的現象產生,然而並非所有退化性物品都在一開始即發生退化,通常會有一段能保持新鮮或維持原有品質的期間,亦即在這一段期間內,物品不會立即發生退化。我們將這種現象定義為「非即時退化」;而這類型的物品稱為「非即時性退化物品」。
再者,物品的需求率並非固定不變,在現實的日常生活中可以觀察到一種現象(尤其在超級市場或大型量販店):一些量販業者會儘量將貨架上的物品擺滿,藉此刺激顧客的需求。對於這類型的物品,其需求通常與貨架上的存貨數量有關。其次,在市場消費行為裡,顧客對於流行的商品、時髦的服飾與產品生命週期短的高科技產品來說,若零售商發生缺貨,顧客在缺貨期間願意等候補貨的比例常與等候補貨時間的長度呈反比;亦即,等候時間愈長,欠撥的比例愈小。
而在一般的商業交易行為中,我們也發現到:供應商基於某些原因如欲刺激零售商購買或買賣雙方訂定的供應鏈合約,會嘗試提供零售商數量折扣或延遲付款等的優惠。
本文係探討一些非即時退化性物品的存貨系統,全文包括了三個存貨模式,第二章考慮一個需求率與存貨水準有關的非即時退化性物品的存貨問題。系統中允許缺貨發生且部分欠撥,並假設欠撥率與等到下一次補貨的時間長度有關。第三章延續第二章的研究,亦假設物品的需求率與存貨水準有關,並考慮在供應商提供數量折扣下探討非即時退化性物品的存貨問題。存貨系統中允許缺貨發生且為部分欠撥,而欠撥率為一隨機變數。第四章則考慮在允許延遲付款下的非即時退化性物品之存貨問題。進一步,我們利用數理方法分別得到所提三種存貨模式最適解存在的充分且必要條件,並分別舉例說明其求解過程,再透過敏感度分析,以瞭解參數值改變對於最適解所造成的影響。最後,第五章則提出本研究的結論及未來的研究方向。
英文摘要 In the inventory system, most of goods will have a phenomenon that deteriorates during the course of stock holding. However, the deterioration always does not occur as soon as the retailer receives the commodities. In real life, most goods would have a span of maintaining quality or original condition, namely, during that period, there is no deterioration occurring. We term the phenomenon as “non-instantaneous deterioration” and this type of item as “non-instantaneous deteriorating item”.
Besides, the assumption of constant demand is not always applicable to real situations. For instance, it is usually observed in the supermarket that display of the consumer goods in large quantities attracts more customers and generates higher demand. Furthermore, when the shortages occur, some customers are willing to wait for backorder and others would turn to buy from other sellers. In some inventory systems, such as fashionable commodities, the length of the waiting time for the next replenishment would determine whether the backlogging will be accepted or not. Therefore, the backlogging rate is variable and dependent on the waiting time for the next replenishment.
In business dealing, for encouraging the retailer to buy more, the supplier offers a price discount or allows a certain fixed period for settling the account but doesn’t charge any interest from the retailer on the amount owed during this period.
This thesis mainly focuses on some deterministic inventory models with non-instantaneous deteriorating items. There are three inventory models including this study. In Chapter 2, we first consider a problem of determining the optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand. In the model, shortages are allowed and the backlogging rate is variable and dependent on the waiting time for the next replenishment. In Chapter 3, we extend Chapter 2’s model when supplier offers the quantity discount. In this model, shortages are also allowed but the backorder rate is considered as a random variable. In Chapter 4, an attempt is made to develop an appropriate inventory model for non-instantaneous deteriorating items when the supplier provides a permissible delay in payments. The necessary and sufficient conditions of the existence and uniqueness of the optimal solutions for the three models are shown. Numerical examples are added to illustrate the results, and the sensitivity analyses of the optimal solution with respect to parameters of the systems are also carried out for understanding how parameter changes influence the optimal solution. Finally, concluding remarks are made in Chapter 5 and future research directions are proposed.
論文目次 目錄
頁次
第一章 緒論 1
1.1. 研究動機與目的 1
1.2. 相關文獻探討 3
1.2.1. 退化性物品 3
1.2.2. 需求型態 6
1.2.3. 數量折扣 7
1.2.4. 延遲付款 8
1.3. 本文結構 10
第二章 需求與存貨水準有關且部分欠撥之非即時退化性物品的存貨模式 13
2.1. 前言 13
2.2. 符號與假設說明 15
2.3. 模式建立 17
2.4. 模式求解 22
2.5. 一些特殊情況與比較 25
2.6. 敏感度分析 28
2.7. 數值範例 30
2.8. 小結 34
第三章 考慮數量折扣下需求與存貨水準有關且隨機欠撥率之非即時退化性物品的存貨模式 36
3.1. 前言 36
3.2. 符號與假設 37
3.3. 模式建立 39
3.4. 模式求解 43
3.5. 數值範例 47
3.6. 敏感性分析 51
3.7. 小結 53
第四章 考慮延遲付款下之非即時退化物品的存貨模式 55
4.1. 前言 55
4.2. 符號與假設 57
4.3. 模式建立 58
4.4. 模式求解 66
4.5. 數值範例與敏感度分析 75
4.6. 小結 80
第五章 結論與後續研究 81
5.1. 主要研究成果 81
5.2. 未來研究方向 85
參考文獻 87
附錄 A. 定理2.1之證明 96
附錄 B. 定理2.2之證明 98
附錄 C. 定理2.3之證明 100
附錄 D. 定理3.1之證明 101
附錄 E. 定理3.2之證明 103
附錄 F. 引理4.1的證明 105
附錄 G. 引理4.2的證明 106
附錄 H. 引理4.3的證明 107

圖目錄
頁次
圖1.1 本文研究架構流程圖 12
圖2.1 部分欠撥且欠撥率與等候時間有關之非即時退化物品存貨系統 18
圖3.1 部分欠撥且隨機欠撥率之非即時退化物品存貨系統 40
圖4.1 情況1的存貨系統(M≦td) 63
圖4.2 情況2的存貨系統(M>td) 64




表目錄
頁次
表2.1 不同的參數值變動對於最適解的影響 32
表2.2 不同情況存貨模式最適解 34
表3.1 數量折扣相關資訊 48
表3.2 範例3.1的求解過程 48
表3.3 不同td與θ值下最適解 49
表3.4 不同a值下之最適解 (其中b=1) 50
表3.5 不同參數變動下對最適解之影響 52
表4.1 範例4.1不同訂購成本A下之最適解 75
表4.2 範例4.2不同訂購成本A下之最適解 76
表4.3 不同M、td與θ值下之最適解彙整表 78
參考文獻 [1]Abad, P.L. (1988a). Determining optimal selling price and lot size when the supplier offers all-unit quantity discount. Decision Sciences, 19(3), 622-634.
[2]Abad, P.L. (1988b). Joint price and lot-size determination when supplier offers incremental quantity discounts. Journal of the Operational Research Society, 39, 603-607.
[3]Aggarwal, S.P. & Jaggi, C.K., (1989). Ordering policy for decaying inventory. International Journal of Systems Science, 20, 151-155.
[4]Aggarwal, S.P. & Jaggi, C.K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658-662.
[5]Arcelus F.J. & Srinivasan, G. (1995). Discount strategies for one-time-only sales. AIIE Transactions, 27, 618-624.
[6]Baker, R.C. & Urban, T.L. (1988). A deterministic inventory system with an inventory-level-dependent demand rate. Journal of the Operational Research Society, 39, 823-831.
[7]Benton, W.C. & Park, S. (1996). A classification of literature on determining the bit size under quantity discounts. European Journal of Operational Research, 92(2), 219-238.
[8]Burwell, T.H., Dave, D.S., Fitzpatrick, K.E. & Roy, M.R. (1991). An inventory model with planned shortages and price dependent demand. Decision Sciences, 22, 1187-1191.
[9]Burwell, T.H., Dave, D.S., Fitzpatrick, K.E. & Roy, M.R. (1997). Economic lot size model for price-depend demand under quantity and freight discount. International Journal of Production Economics, 48, 141-155.
[10]Chang, C.T. (2004). An EOQ model for deteriorating items under inflation when supplier credits linked to order quantity. International Journal of Production Economics, 88, 307-316.
[11]Chang, C.T., Ouyang, L.Y. & Teng, J.T. (2003). An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Applied Mathematical Modelling, 27, 983-996.
[12]Chang, C.T., Goyal, S.K. & Teng, J.T. (2006). On “An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging” by Dye and Ouyang. European Journal of Operational Research, 174(2), 923-929.
[13]Chang, H.J. & Dye, C.Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society, 50, 1176-1182.
[14]Chang, H.J. & Dye, C.Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, 32, 345-352.
[15]Cohen, M.A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistic Quarterly, 24, 257-268.
[16]Covert, R.P. & Philip, G.C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5, 323-326.
[17]Datta, T.K., Paul, K. & Pal, A.K. (1998). Demand promotion by upgradation under stock-dependent demand situation–a model. International Journal of Production Economics, 55, 31-38.
[18]Davis, R.A. & Gaither, N. (1985). Optimal ordering policies under conditions of extended payment privileges. Management Science, 31, 499-509.
[19]Dye, C.Y. (2007). Joint pricing and ordering policy for a deteriorating inventory with partial backlogging. Omega, 35(2), 184-189.
[20]Dye, C.Y., Chang, H.J. & Teng, J.T. (2006). A deteriorating inventory model with time-varying demand and shortage- dependent partial backlogging. European Journal of Operational Research, 172(2), 417-429.
[21]Dye, C.Y. & Ouyang, L.Y. (2005). An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research, 163(3), 776-783.
[22]Fordyce, J.M. & Webster, F. M. (1984). Nonconstant unit cost/price with the Wagner-Whitin algorithm. Production and Inventory Management, 26(1), 71-80.
[23]Ghare, P.M. & Schrader, G.H. (1963). A model for exponentially decaying inventory system. Journal of Industrial Engineering, 14, 238-243.
[24]Giri, B.C., Pal, S., Goswami, A & Chaudhuri, K.S. (1996). An inventory model for deteriorating items with stock-dependent demand rate. European Journal of Operational Research, 95(3), 604-610.
[25]Goyal, S.K. (1985). EOQ under conditions of permissible delay in payment. Journal of the Operational Research Society, 36, 335-338.
[26]Goyal, S.K. & Giri, B.C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1-16.
[27]Gupta, R. & Vrat, P. (1986). Inventory model with multi-items under constraint systems for stock dependent consumption rate. Operations Research, 24, 41-42.
[28]Hadley, G. & Whitin, T.M. (1961). An optimal final inventory model. Management Science, 7(2), 179-183.
[29]Haley, C.W. & Higgins, R.C. (1973). Inventory policy and trade credit financing. Management Science, 20(4), 464-471.
[30]Harris, F. W. (1913). How many parts to make at once. Factory. The Magazine of Management, 10, 135-136.
[31]Huang, Y.F. & Chung, K.J. (2003). Optimal replenishment and payment policies in the EOQ model under cash discount and trade credit. Asia-Pacific Journal of Operational Research, 20, 177-190.
[32]Huo, K.L. (2006). An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. European Journal of Operational Research, 168(2), 463-474.
[33]Hwang, H. & Shinn, S.W. (1997) Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24, 539-547.
[34]Jamal, A., Sarker, B. & Wang, S. (1997) An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.
[35]Khouja, M. & Mehrez, A. (1996). Optimal inventory policy under credit policies. Journal of Manufacturing Systems, 15, 334-339.
[36]Kingsman, B.G. (1983). The effect of payment rules on ordering and stocking in purchasing. Journal of the Operational Research Society, 34(11), 1085-1098.
[37]Liao, H.C., Tsai, C.H. & Su, C.T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63, 207-214.
[38]Mandal, B.N. & Phaujdar, S. (1989). An inventory model for deteriorating items and stock-dependent consumption rate. Journal of the Operational Research Society, 40, 483-488.
[39]Ouyang, L.Y., Chen, M.S. & Chuang, K.W. (2002). Economic order quantity model under cash discount and payment delay. International Journal of Information and Management Sciences, 13, 1-10.
[40]Ouyang, L.Y., Teng, J.T. & Chen, L.H. (2006). Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. Journal of Global Optimization, 34, 245-271.
[41]Padmanabhan, G. & Vrat, P. (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86(2), 281-292.
[42]Pal, S., Goswami, A. & Chaudhuri, K.S. (1993). A deterministic inventory model for deteriorating items with stock-dependent demand rate. International Journal of Production Economics, 32, 291-299.
[43]Pal, A.K., Bhunia, A.K. & Mukherjee, R.N. (2005). A marketing-oriented inventory model with three-component demand rate dependent on displayed stock level (DSL). Journal of the Operational Research Society, 56, 113-118.
[44]Pal, A.K., Bhunia, A.K. & Mukherjee, R.N. (2006). Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level (DSL) and partial backordering. European Journal of Operational Research, 175(2), 977-991.
[45]Papachristos, S. & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type–backlogging. Operations Research Letters, 27, 175-184.
[46]Papachristos, S. & Skouri, K. (2003). An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging. International Journal of Production Economics, 83, 247-256.
[47]Philip, G.C. (1974) A generalized EOQ model for items with Weibull distribution. AIIE Transactions, 6, 159-162.
[48]Ray, J. & Chaudhuri, K.S. (1997). An EOQ model with stock-dependent demand, shortage, inflation and time discounting. International Journal of Production Economics, 53, 171-180.
[49]Ray, J., Goswami, A. & Chaudhuri, K.S. (1998). On an inventory model with two levels of storage and stock-dependent demand rate. International Journal of Systems Science, 29, 249-254.
[50]Sarker, B.R., Mukherjee, S. & Balan, C.V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, 48(3), 227-236.
[51]Shah, N.H. (1993). Probabilistic time scheduling model for an exponentially decaying inventory when delay in payments are permissible. International Journal of Production Economics, 32, 77-82.
[52]Shah, N.H. (2004). Probabilistic order level system when items in inventory deteriorate and delay in payments is permissible. Asia-Pacific Journal of Operational Research, 21, 319-331.
[53]Shah, Y.K. (1977). An order-level lot size inventory model for deteriorating items. AIIE Transactions, 9, 108-112.
[54]Shinn, S.W. & Hwang, H. (2003). Optimal pricing and ordering policies for retailers under order-size dependent delay in payments. Computers and Operations Research, 30, 35-50.
[55]Shiue, Y.C. (1990). An inventory model for perishable items in a lot-size system with quantity discounts. European Journal of Operational Research, 45(2-3), 260-264.
[56]Silver, E.A., Pyke, D.F. & Peterson, R. (1998). Inventory Management and Production Planning and Scheduling (3rd edition), John Wiley & Sons.
[57]Teng, J.T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53, 915-918.
[58]Tersine, R.J. & Toelle, R.A. (1985). Lot size determination with quantity discounts. Production and Inventory Management, 26(3), 1-23.
[59]Wang, S.P. (2002). An inventory replenishment policy for deteriorating items with shortages and partial backlogging. Computers & Operations Research, 29, 2043-2051.
[60]Wee, H.M. (1992). Perishable commodities inventory policy with partial backordering. Chung Yuan Journal, 12, 191-198.
[61]Wee, H.M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers & Operations Research, 22, 345-356.
[62]Wee, H.M. (1999). Deteriorating inventory model with quantity discount, pricing and partial backlogging. International Journal of Production Economics, 59, 511-518.
[63]Yang, H.L. (2005). A comparison among various partial backlogging inventory lot-size models for deteriorating items on the basis of maximum profit. International Journal of Production Economics, 96 (1), 119-128.
[64]Zhou, Y.W. & Lau, H.S. (2000). An economic lot-size model for deteriorating items with lot-size dependent replenishment cost and time-varying demand. Applied Mathematical Modelling, 24(10), 761-770.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-01-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-01-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信