§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2609201709542300
DOI 10.6846/TKU.2017.00952
論文名稱(中文) 超精密鑽石車削加工微光學結構製程中毛邊形成機制與抑制方法之研究
論文名稱(英文) Study of burr formation mechanisms involved in ultra-precision diamond turning of various micro-optical structures
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 林文忠
研究生(英文) Wen-Chung Lin
學號 898370027
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2017-07-13
論文頁數 213頁
口試委員 指導教授 - 趙崇禮(clchao@mail.tku.edu.tw)
委員 - 左培倫
委員 - 陳昭彰
委員 - 馬廣仁
委員 - 陳順同
關鍵字(中) 刮痕
微切削
切屑
毛邊機制
關鍵字(英) scratches
micro-cutting
chips
burr
第三語言關鍵字
學科別分類
中文摘要
背光模組(back-light module)內的增亮膜((Brightness Enhancement Film, BEF)是TFT-LCD之必要光學元件且朝向大尺寸發展,此系利用已完成微結構切削之金屬滾軸進行roll to roll制程,壓印出所需之光學結構膜,所以大尺寸滾軸微結構加工是終端產品的先決條件。增亮膜如果能以兩張V溝(V-groove)互以90度堆疊形成金字塔結構(pyramid)者,不僅可提高輝度達110%,同時一次壓印下還可降低背光模組的厚度與制程簡化。但是V溝切削不良除了容易造成邊緣型毛邊(side burr)之外,而金字塔結構屬於不連續切削,不僅會造成離斷型毛邊(exit burr)之外,更會讓刀具急劇磨耗,使微結構變形。而適合難切削材料的橢圓振動切削(Elliptical Vibration Cutting, EVC)和飛刀加工(fly-cut),在粗糙度和切削速度上都遠遠不及于單點鑽石車削(Single Point Diamond Turning, SPDT)切削延展性金屬所能達到的奈米級鏡面和加工速度。
本文研究發現除了不適當的切削條件外,不同微結構切削時也會產生不同的毛邊問題。同時過去傳統精密切削加工的研究中,也忽略了菱鏡(prism)結構相鄰之間的切削干擾及因為切屑的剝離不良所導致的新毛邊問題。最後針對來源不同或未知的材料,如何能在加工前預測出最適合的切削條件及有效的毛邊抑制方法進行了探討。本文研究首先透過有限元素分析( Finite element method , FEM)對毛邊的形成進行預測,接著以單點鑽石車削無氧銅為實驗基礎,利用固定荷重(fix-loading)與固定切深(fix-feed)之刮痕模式對毛邊形成機制進行討論,最後根據不同刀具設計、不同微結構與切削條件,在CNC上進行滾筒模具切削。研究結果顯示:(1)切削時刀具會對被切削材料V溝的兩側擠壓而形成邊緣型毛邊,(2)切削阻力越大者在離斷的材料端面上越容易形成離斷型毛邊,(3)V溝菱鏡結構閉合後因波峰兩兩拉扯下會形成一種新的波浪型毛邊(wave burr) 問題,(4)離斷結構切削時,切屑的脫離不良除了邊緣型毛邊外還會導致新的剝離形毛邊(stripping burr)問題,(5)spiral cut能改變進給方向以平衡切削力者可以改善不對稱切削的毛邊,(6)plung cut的微量切削特性可以抑制離斷型毛邊,(7)切屑面的皺摺間距越細則顯示該材料的被切削性越好。
英文摘要
The backlight module of the Brightness Enhancement Film( BEF) is a necessary element of optical TFT-LCD and towards the development of large size. Using the metal roller which has been finished cutting micro structure first, and then used roll to roll process to stamping out the required optical structure, so large size roller processing is a prerequisite for terminal products. If can be stacked with two V-groove of BEF film to form a Pyramid structure at 90 degrees, it can not only increase the brightness to 110%, but also reduce the thickness and process simplification of the backlight module at one time. V-grooving cutting bad, in addition to easy to cause the side Burr, and the Pyramid structure is not continuous cutting, so will not only cause the formation of exit Burr, will be the tool wear and then micro structure deformation. And suitable to the hard cutting materials of elliptical vibration cutting (EVC) and fly-cut, the cutting roughness and speed is far inferior to the single point diamond turning (SPDT) cutting the malleable metal can reach Nano scale mirror and processing speed.
The paper is found that in addition to the improper cutting conditions, different micro structures also produce different burrs when cutting. At the same time, in the past research on the traditional precision cutting, the cutting edge interference between the prism and the new burrs caused by the poor peeling of the chip have also been neglected. Finally, how to predict the most suitable cutting conditions and the effective methods of cutting edges are discussed for different sources or unknown materials. The paper through the finite element method (FEM) to predict the burr formation followed by single point diamond turning on Oxygen free copper as the experimental basis, mechanism of burr formation was discussed by using the fixed load and fixed cutting depth of scratch mode. Finally, we are according to different cutting tools design and different micro structure and cutting condition to do the cutting experiment of the roller is carried out by using CNC. The results show that: (1) The tool will be extruded on both sides of the V groove of the cutting material to form side burr at cutting. (2)The larger of cutting force Is more easily to exit burr formation on the material of end face. (3) A new wave burr problem is formed after V grooving is closed and the wave peak interferes with each other. (4) When cutting the discontinuous structure, the discontinuous chip will lead to a new peeling burr problem when it breaks away from the material surface. (5) Used spiral cut can change the feed direction to balance cutting force, and can improve the cutting burr of asymmetrical cutting. (6) The micro cutting characteristics of plunge cut can inhibit the exit burr. (7) The same material but different hardness, the chip of the wrinkles spacing is more fine and it shows that the material is better cutting.
第三語言摘要
論文目次
誌謝	I
中文摘要	I
英文摘要	III
目錄	V
圖目錄	IX
表目錄	XVI
符號說明	XVII
第一章	序論	1
1-1	前言	1
1-2	研究背景	4
1-3	研究動機與目的	8
第二章	論文回顧與理論基礎	20
2-1	金屬切削基本理論	20
2-1-1	切削基本模式	21
2-1-2	二維切削模型與力學	26
2-1-3	切削幾何	29
2-1-4	切削尺寸效應	31
2-2	毛邊定義與形成機制	34
2-3	切削毛邊的模擬與預測	43
2-4	飛刀切削與毛邊形成機制	50
2-5	橢圓振動切削與毛邊形成機制	56
2-6	滾筒形金屬模具加工	60
2-7	特殊材料的微切削	63
2-8	光學膜ROLL TO ROLL製程	67
第三章	研究方法與設備	70
3-1	實驗設計	70
3-1-1	慢速刮痕實驗	71
3-1-2	快速刮痕實驗	71
3-1-3	加工機切削驗證	72
3-2	實驗設備	72
3-2-1	固定荷重式慢速刮痕器	72
3-2-2	高速主軸式之固定切深式快速刮痕	74
3-2-3	四軸式超精密滾軸加工機	74
3-3	實驗材料與刀具	76
3-3-1	鑽石刀具	76
3-3-2	實驗材料與工件	77
3-4	分析儀器	79
3-4-1	光學顯微鏡	79
3-4-2	掃描式電子顯微鏡	79
3-4-3	雷射掃描式共軛焦顯微鏡	79
3-5	DEFORM 3D切削模擬軟體	80
3-6	實驗流程	81
第四章	DEFORM 3D切削模擬與毛邊預測	82
4-1	不同刀具內夾角切削對毛邊發展之模擬預測	84
4-2	不同刀具前傾角切削對毛邊發展之模擬預測	84
4-3	不同刀具偏轉角切削對毛邊發展之模擬預測	85
4-4	刀具側傾角(不對稱角) 對切削毛邊發展之模擬預測	86
4-5	刀刃R值 (磨耗)對切削毛邊發展之模擬預測	86
4-6	不同刀具內夾角對應刀刃R值之切削毛邊發展模擬預測	88
第五章	固定荷重模式之慢速刮痕實驗	91
5-1	固定荷重之短刮痕對毛邊發展的影響	92
5-2	固定荷重之V-GROOVING對毛邊發展的影響	93
5-3	固定荷重之刀具側傾角(不對稱切削)對毛邊發展的影響	96
5-4	固定荷重之刀具前後傾角對毛邊發展的影響	98
5-5	固定荷重之刀具不同內夾角對毛邊發展的影響	101
5-6	固定荷重之刀具偏轉角度對毛邊發展的影響	102
5-7	固定荷重之不同被切削材料對毛邊發展的影響	104
5-8	固定荷重之刮痕切屑分析	106
第六章	固定切深模式之刮痕實驗	109
6-1	固定切深下慢速刮痕對毛邊發展的影響	109
6-2	固定切深下V-GROOVING閉合波峰對毛邊發展影響	112
6-3	固定切深下不同切削速度對毛邊發展的影響	114
6-4	固定切深下在不同切削深度對毛邊發展的影響	118
6-5	固定切深下不同刀具條件對離斷型毛邊的發展影響	121
6-5-1	不同刀具內夾角刮痕對斜端面(離斷型)的毛邊影響	122
6-5-2	不同刀具內夾角刮痕在不同切深下對斜端面的毛邊影響	123
6-5-3	不同刀具磨耗的刮痕對斜端面的毛邊影響	126
第七章	設備誤差與毛邊關係	132
7-1	加工機精度實驗前測試加工	132
7-2加工機軸運動誤差補償	136
7-3補償後各軸運動定位精度與加工確認	138
7-4操作環境的溫度確認	140
第八章	模具不同微切削毛邊分析與參數優化	144
8-1	螺旋式與直進式車削之工法差異分析	145
8-2	SPIRAL切削PYRAMINDS微結構與毛邊抑制	150
8-3	PLUNGE切削PYRAMINDS微結構與毛邊抑制	156
8-4	不對稱角度切削對毛邊的發展與抑制研究	164
8-5	切屑與被切削材料的適切削性研究	174
第九章	其他特殊材料加工之微切削研究	179
9-1	高分子PU材料之微切削研究	179
9-2	硬脆材料碳化鎢之微切削研究	186
第十章	結論與未來展望	193
參考文獻	201

圖目錄
圖-1 細微加工精度演進圖[2]...........................................................2
圖-2 背光模組示意圖[11]................................................................11
圖-3 美國3M公司增亮膜專利結構[12]........................................11
圖-4 可提升增亮膜出光量的金字塔陣列結構[18].......................12
圖-5 金字塔立體四角錐結構的四向多點光源..............................12
圖-6 第一方向之V溝結構撞擊刀具示意圖.................................13
圖-7 PYRAMIDS正交結構加工之毛邊與刀具磨耗....................13
圖-8 金字塔結構與切削毛邊..........................................................14
圖-9 (A)傳統切削捲曲型毛邊[20](B) 切削塑性變型流痕毛邊..15
圖-10 (A)PU輪切削後融熔表面(B)切削PU輪刀具熱磨耗崩損..18
圖-11 含鈷量10%的碳化鎢之車削前及車削後外觀差異..............19
圖-13 正交切削與斜交切削[23].......................................................22
圖-14 切削變形區與第I變形區切屑形成.......................................24
圖-15 切屑型態:(左)不連續型(中)連續型(右)BUE連續型[10] .....26
圖-16 切削力學圖..............................................................................27
圖-17 正交之切削力關係圖[28] .......................................................28
圖-18 切屑之形成幾何示意圖 ..........................................................30
圖-19 SLIP-LINE FIELD FOR PLOUGHING [34]..........................33
圖-20 切削毛邊類型[42]....................................................................35
圖-21 毛邊形成起源圖[44]................................................................37
圖-22 毛邊形成機制四個步驟[44]...................................................38
圖-23 切削深度FT與刀刃R的比值[45] .........................................39
圖-24 切削分力圖[45] ........................................................................39
圖-25 EXIT BREAK OFF MODEL[46]............................................41

圖-26 毛邊形成模型(A)毛邊發展圖(B)毛邊發展SEM[49].........42
圖-27 切削加工的毛邊形成之有限元素模擬圖[50] .......................43
圖-28 在不同切削速度下的毛邊形成之有限元素模擬圖[50] .......44
圖-29 以FEM模擬金屬切削毛邊(上)及毛邊SEM(下)之比較[51]..................................................................................................45
圖-30 (A)第一切深材料停滯與切屑流向(B)第二切深切屑流向...46
圖-31 (A)第一切深的切屑流模擬(B)第二切深的切屑流模擬.....47
圖-32 黃銅與無氧銅不同材料對切削毛邊的影響[70] ...................52
圖-33 不同刀具刀刃半徑對毛邊的影響[71] ...................................52
圖-34 FLY-CUT刀具進給方向切削示意圖[70] .............................53
圖-35 利用FLY-CUT之DOWN-CUT模式加工PYRAMIDS......53
圖-36 形成毛邊的四個階段[70].......................................................54
圖-37 橢圓振動切削(EVC)[76].........................................................57
圖-38 在COPPER上以CC及EVC(VF=5M/MIN)加工ARRAY之比較[78]................................................................................57
圖-39 切削V型微溝槽的毛邊差異[82]...........................................58
圖-40 V溝切削示意圖[85]................................................................60
圖-41 連續式切削V溝菱鏡的SIDE BURR型態[86] ....................62
圖-42 斷續式切削正交結構的EXIT BURR型態[86] ....................62
圖-43 CO含量與切削距離及刀具磨耗之關係圖[95].....................66
圖-44 TFT-LCD背光模組結構[100] ................................................68
圖-45 光學膜之ROLL TO ROLL製程示意圖[102] .......................69
圖-46 慢速刮痕示意圖 ......................................................................71
圖-47 晶圓劃線機全景(左)與慢速刮痕器刀具(右) .........................73
圖-48 固定切深式快速刮痕設備示意(上視)圖 ...............................74

圖-49 滾筒式超精密加工機四軸運動座標系..................................75
圖-50 刮痕器用鑽石刀具OM圖......................................................76
圖-51 人工鑽石車刀(SEM)...............................................................77
圖-52 刮痕器實驗工件......................................................................78
圖-53 光學膜ROLL TO ROLL用滾筒型模具................................79
圖-54 (A)PRO-E繪製鑽石刀具(B)模擬程式自動產生工件..80
圖-55 實驗設計與流程圖 ..................................................................82
圖-56 切削軟體模擬程序示意圖......................................................83
圖-57 不同刀具內夾角之毛邊模擬預測結果..................................84
圖-58 900刀具前傾角之毛邊模擬預測結果....................................85
圖-59 刀具右偏轉對毛邊發展的模擬預測結果..............................86
圖-60 刀具右側傾切削對毛邊發展的模擬預測結果......................86
圖-61 有限元素模擬磨耗90度內夾角鑽石車刀..........................87
圖-62 90度鑽石刀具磨耗下不同切深之毛邊模擬結果.................88
圖-63 刀具不同內夾角刀具及刀刃R值對應毛邊高度曲線關係.89
圖-64 內夾角90度刀具之點刮痕材料推犁之共軛焦圖 ................92
圖-65 V溝切削示意圖......................................................................93
圖-66 (A)刮痕切入點向外推擠應力(B)刮痕之彗星尾向外塑性變形流痕..................................................................................94
圖-67 (A)刮痕切屑皺摺與邊緣撕裂(B)刮痕切屑正面皺摺與邊緣撕裂......................................................................................95
圖-68 不對稱角度切削示意圖..........................................................96
圖-69 (A)刀具右側傾斜角10O(B)刀具右側傾斜角40O...........96
圖-70 刀具傾斜造成不同切屑厚度之示意圖..................................97
圖-71 刀具前傾斜切削示意圖..........................................................99

圖-72 OM顯示不同傾角下的毛邊發展明顯-450>-150.................100
圖-73 第一方向刮痕(A)傾角-150刮痕毛邊(B)傾角-450刮痕跳動毛邊....................................................................................100
圖-74 第二方向(A)傾角-150                 (B)傾角-450..................101
圖-75 不同刀具內夾角之刮痕OM結果........................................102
圖-76 刀具偏轉角之切削示意圖....................................................103
圖-77 刀具偏右轉角之刮痕OM結果............................................103
圖-78 NIP的十字刮痕之LSCM(雷射共軛焦OM)結果..............105
圖-79 刮痕起點仍顯示向外推擠力但V溝無SIDE BURR.........105
圖-80 銅材刮痕時形成的推擠與切屑皺摺導致邊緣毛邊發展....107
圖-81 (A)鎳材刮痕切屑邊緣平整(B)銅材刮痕切屑邊緣
圖-82 無氧銅固定切深之慢速刮痕OM型態................................111
圖-83 無氧銅慢速刮痕的邊緣毛邊型態比較................................111
圖-84 無氧銅在不同刮痕模式下的慢速十字刮痕型態比較........112
圖-85 連續V溝閉合相鄰的波峰毛邊形態...................................113
圖-86 刀具對材料刮痕時向外擠壓的塑性變形............................114
圖-87 固定切深=0.01MM、切削V=5,000MM/MIN嚴重毛邊...116
圖-88 固定切深=0.01MM、切削V=20,000MM/MIN微量毛邊.116
圖-89 固定切深=0.010MM、V=100,000MM/MIN無可見毛邊..117
圖-90 固定切深進行十字切削的離斷型毛邊問題........................117
圖-91 SPIRAL漸進切深=0~0.020MM及波峰未閉合下均無毛邊問題........................................................................................119
圖-92 SPIRAL漸進切深=0~0.020MM波峰閉合產生輕微毛邊..120
圖-93 SPIRAL漸進切深=0~0.030MM下的毛邊與切削振紋......121
圖-94 一次切深0.01MM不同刀具的斜端面毛邊長度趨勢........122

圖-95 45度刀具在斜端面的刮痕離斷型毛邊大小.......................123
圖-96 90度刀具在斜端面的刮痕離斷型毛邊大小.......................124
圖-97 130度刀具在斜端面的刮痕離斷型毛邊大小.....................124
圖-98 一次切深0.03MM下不同刀具的斜端面毛邊長度趨勢....125
圖-99 90度刀具不同R值(磨耗度)SEM圖..................................126
圖-100 90度刀具不同R值刮痕的離斷型毛邊長度......................126
圖-101 45度刀具不同分次切深的離斷型毛邊長度.......................128
圖-102 90度刀具不同分次切深的離斷型毛邊長度.......................128
圖-103 130度刀具不同分次切深的離斷型毛邊長度.....................128
圖-104 不同分次切深模式之毛邊趨勢............................................129
圖-105 滾筒型加工機及滾軸安裝 ....................................................133
圖-106 測試結構9050BEF加工示意圖(單位=MM) .......................134
圖-107 (A)加工誤差結構(B)加工誤差導致滾軸表面不良紋路 .....136
圖-108 複製結構之SEM,顯示加工誤差所造成的結構錯位 .......136
圖-109 X/Z軸雷射定位安裝圖 .........................................................137
圖-110 C軸雷射定位安裝圖 ............................................................137
圖-111 各軸精度補償前後結果 ........................................................139
圖-112 軸誤差補正後之正確多螺紋結構........................................140
圖-113 利用IR-GUN測知加工機操作溫度之熱影響來源............141
圖-114 加工機5支溫度感知器配置圖............................................142
圖-115 5支溫度感應器之24小時連續溫度波動...........................142
圖-116 SPIRAL CUT與PLUNGE CUT工法差異示意圖 .............146
圖-117 SPIRAL CUT分次加工誤差所導致的切削錯位示意圖 ....147
圖-118 不同工法同在無氧銅模具加工9050結構毛邊結果..........149
圖-119 SPIRAL CUT結構閉合之左右波浪型毛邊放大圖............149 

圖-120 第1方向橫削結構封閉後檢視無邊緣型毛邊....................151
圖-121 SPIRAL不同切削參數下之殘留離斷型毛邊之加工結果 .154
圖-122 二道切深+微量切深之PYRAMINDS離斷型毛邊圖........156
圖-123 刀具離出斷面結構之材料剝離與離斷形毛邊發展示意圖156
圖-124 刀具磨耗前的加工結構完整無毛邊與變形 ........................158
圖-125 刀具磨耗後的加工結構 ........................................................159
圖-126 刀具切削路徑15,000M磨耗後顯示尖端與邊刃磨耗圖 ...159
圖-127 切削路徑7,000M無毛邊無刀具磨耗的結構影像 .............160
圖-128 切削路徑7,000M切削完整之光學膜影像共軛焦量測 .....161
圖-129 切削路徑15,000M無毛邊有刀具磨耗的光學膜結構影像161
圖-130 切削路徑15,000M加工磨耗之光學膜共軛焦影像量測 ...162
圖-131 刀具不對稱角與切削厚度關係示意圖................................165
圖-132 加工結構設計圖....................................................................165
圖-133 加工前刀具外形(OM*1000).................................................165
圖-134 PLUNGE CUT嚴重的波浪型毛邊......................................166
圖-135 SPIRAL CUT(向右10.30側進給)輕微的波浪型毛邊.........167
圖-136 SPIRAL CUT(向左360側進給)波浪型毛邊幾乎消失........167
圖-137 單切7和11ΜM深V溝顯示右側出現較大邊緣形毛邊..169
圖-138 以UV膠及光固化反複製結構示意圖................................169
圖-139 PLUNGE CUT反複製結構剖面OM/SEM顯示波峰傾向10.30側...................................................................................169
圖-140 刀具10.30側切刃明顯磨耗..................................................170
圖-141 SPIRAL CUT向右進給右側毛邊明顯,後受左刃擠壓往左傾斜........................................................................................171
圖-142 SPIRAL CUT向左進給左切刃毛邊較小,右刃切削厚度恰可消除....................................................................................171
圖-143 SPIRAL CUT向左進給切削結構完整無毛邊(UV COPY)172
圖-144 往左進給切削距離為5,000M時波峰毛邊及刀具磨耗均發生明顯於10.3度側...............................................................173
圖-145 不對稱切削與尺寸效應示意圖............................................173
圖-146 以R10MM圓弧刀作車平后的切屑外觀比較....................175
圖-147 HV=600鎳磷車平切屑表面外觀與皺褶間距.....................176
圖-148 HV=660鎳磷車平切屑表面外觀與材料滑移皺褶間距.....176
圖-149 HV=700鎳磷車平切屑表面外觀與皺褶間距.....................176
圖-150 HV=700鎳磷V溝切屑表面外觀與結構面皺褶................178
圖-151 HV=700鎳磷V溝切屑表面外觀與結構面皺褶................178
圖-152 HV=700鎳磷V溝切屑表面外觀與結構面皺褶................178
圖-153 線切割機操作原理................................................................180
圖-154 PU輪鏡面傳統冷確切削時的高溫效應..............................181
圖-155 R50MM切削後刀具表面受到PU融熔態的高溫破壞......181
圖-156 以高壓氮氣進行切削冷卻後可形成連續切屑....................182
圖-157 低溫氮氣與常溫冷卻切削的表面粗糙差異........................183
圖-158 高壓氮氣低溫冷卻切削設置圖............................................184
圖-159 切削面的OM顯微結構........................................................184
圖-160 未採用低溫冷卻切削PU輪所導致的刀具嚴重崩損.........185
圖-161 PU切屑邊緣平滑無切削力所造成的撕裂痕跡..................186
圖-162 三種圓弧刀不同條件的FACING切削結果.......................189
圖-163 碳化鎢完成微量FACING後的表面組織呈現平滑...........190
圖-164 碳化鎢切削量=0.003MM下顯示有類延性切削特徵.........190

表目錄
表-1冷陰極管與發光二極體性能比較表................................9
表-2不同加工方法所產生的毛邊型態[42] ...........................35
表-3WAFER SCRIBER 規格.................................................73
表-4滾筒式四軸超精密加工機規格與精度簡表..................76
表-5模擬切削參數..................................................................81
表-6鑽石車刀之不同內夾角與刀刃R值的切削毛邊高度結果..................................................................................89
表-7慢速刮痕實驗切削參數..................................................91
表-8不同刀具角度下的分次切削參數................................127
表-9滾軸加工前置準備與表面基準化加工參數................133
表-109050BEF結構之設備精度測試加工參數....................134
表-115支溫度感應器之24小時連續溫度平均與變異.......143
表-12兩種工法切削9050結構之加工條件..........................147
表-13圓弧刀鏡面切削參數表(單位:MM).............................187
參考文獻
[1]	Chae, J., Park, S. S., & Freiheit, T. (作者). (2006). Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture, 46(3), 313–332. https://doi.org/10.1016/j.ijmachtools.2005.05.015
[2]	盧銘詮,“ 微細切削加工與微刀具狀態偵測發展”,機械工業雜誌,p74-75,第300期,97年3月
[3]	趙崇禮、馬廣仁、林宏彝,”微模具製程技術發展現況”,機械工業雜誌,p48~49,第279期。
[4]	莊殷,”光電產業用模具加工技術之應用與發展”,模具技術成果與論文發表會,2003。
[5]	Jafri R, Hasan W, Shahzad M., “Current trends in electronic display technology.”, Journal of Information and Communication Technology, 2008, 2(1): 68−75.
[6]	Kandráč, L., Maňková, I., & Vrabeľ, M. (作者). (2013). Cutting edge preparation in machining processes. Scientific Letters of Rzeszow University of Technology - Mechanics, 30(85(2/2013)), 149–159. https://doi.org/10.7862/rm.2013.14
[7]	趙芝眉、湯銘權、蔡在儃,“金屬切削原理”,科技圖書股份有限公司, p166-167。
[8]	張志豪,”LED用於背光模組的發展及散熱問題” ,工業材料雜誌, p67, 第247期, 2007年7月。
[9]	Yanagi, E., Fukunishi, T., Shoji, O., & Yoshida, N., “Back lighting device for a liquid crystal panel”, US, US4937709. (1990).
[10]	陳冠宇,“Applicaion of Rapid Toolin g Technology on the fabrication of Light Guide Plate”,台灣科技大學機械工程學系碩士論文,p67-68,(2005).
[11]	陳燕儀、呂世源,"光學膜~光的魔術師",科學發展第414 期, p138, 2007年6月。
[12]	Cobb, S., Gardiner, M. E., Hibbard, W. A., Kotchick, K. M., & Toyooka, K., Variable pitch structured optical film, WO, US 5919551 A. (1999).
[13]	Shim, Y. S., Cho, S. M., Prism sheet of back light unit for LCD: USA 0097708. 2007−05−03.
[14]	Wang, K. H., Lin, D., Ko, Y. C., Luminance enhancement optical substrates: USA 0049451. 2008−02−28.
[15]	Wang, K. H., Lin, D., Ko, Y. C., Moire reducing optical substrates with irregular prism structures: USA 0010594. 2007−01−11.
[16]	Nemoto, A., Sasuga, M., LCD having a pattern for preventing a wavy brightness irregularity at the edges of the screen due to drive elements or tape carrier packages: USA 6456344. 2001−01−02.
[17]	Kim, S. M., Choi, J., Kim, D., & Chung, S. (2012). Optical sheet and method of manufacturing the same. US, US8616753.
[18]	Aoyama, H., T. Kishinami, and K. Saito, ‘A Study on a Throw Away Tool Equipped with a Sensor to Detect Flank Wear.’, BULL. JAPAN SOC. PRECIS ENGNG., 21 (1987) 
[19]	Akiyama, T., Kato, S., Kakishima, H., & Kondou, S. (2012). Method and apparatus for machning V grooves. US, US8215211.
[20]	Fang, Fengzhou, H Wu, X D Liu, G C Lim, Y Liu, and S T Ng, ‘Fabrication of Micro Grooves’, 2017
[21]	Meier, Axel, ‘Diamond Turning of Diffractive Microstructures’, Precision Engineering, 42 (2015), 253–60 <https://doi.org/10.1016/j.precisioneng.2015.05.007>
[22]	Son, Seong-Min, Han-Seok Lim, In-Hwan Paik, and Jung-Hwan Ahn, ‘A Study on Critical Depth of Cuts in Micro Grooving’, KSME International Journal, 17 (2003), 239–45 <https://doi.org/10.1007/BF02984395>
[23]	洪良德, 陳正仁, 陳昌順, 謝壬癸, 李鈞澤, 郭柏立, 傅光華, “切削刀具學”, 高立圖書公司(2003), 第三章刀具刃。
[24]	Degarmo, E. P., Black, J. T., & Kohser, R. A., “Materials and Processes in Manufacturing”, 7 TH EDITION, Macmillan Publishing Company, NEW YORK(1988), Chapter 5, p526-527 & p538-539.
[25]	何正義、姚威宏、鄭朝旭、蕭肇凱、聶國禎,"機械製造",高立圖書公司(2011),第八章金屬成形原理。
[26]	Merchant, M. Eugene, ‘Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip’, Journal of Applied Physics, 16 (1945), 267–75 <https://doi.org/10.1063/1.1707586>
[27]	Milton C. Shaw, ‘Metal Cutting Principles’, MIT Press <https://mitpress.mit.edu/books/metal-cutting-principles> 
[28]	Degarmo, E. P., Black, J. T., & Kohser, R. A., “Materials and Processes in Manufacturing”, 7 TH EDITION, Macmillan Publishing Company, NEW YORK(1988), Chapter 5, p532-533.
[29]	Degarmo, E. P., Black, J. T., & Kohser, R. A. “Materials and Processes in Manufacturing”, 7 TH EDITION, Macmillan Publishing Company, NEW YORK(1988), Chapter 5, P530~P531
[30]	彭馨寬、王峻志,"不同條件下劃切現象之分析",國立成功大學機械工程學系碩士班學位論文, p78-82, (2006)。
[31]	Bracer,W.R., Marshall, E.R. and Shaw, M.C., "The size effect in metal cutting", Transactions of the ASME, Vol.74, pp.61~72 (1952)
[32]	Shmada, S., Ikawa, N., Tanaka, H., Ohmori, G. & Uchikoshi, J.,"Feasibility study on Ultimate accuracy in micro-cutting using molecular dynamics simulation " Annals of the CIRP, Vol. 42, pp.91-94 (1993)。
[33]	Eneres, W. J., Devor, R. J. & Kapoor, S. G., "A Dual-Mechanism Approach to the Prediction of Machining Forces for Metal-cutting Processes ", ASME Journal of the Engineering for Industry, Vol.117,pp. 526-541 (1995)。
[34]	Waldorf, D. J., R. E. DeVor, and S. G. Kapoor, ‘A Slip-Line Field for Ploughing During Orthogonal Cutting’, Journal of Manufacturing Science and Engineering, 120 (1998), 693–99 <https://doi.org/10.1115/1.2830208>
[35]	Binu, P. J., ”CALING DOWN OF MANUFACTURING SYSTEMS : MESO AND NANO LEVEL MACHINING –AN ANALYSIS ”, Submitted in partial Fulfillment of the Requirements for the Degree Master of science , December (2003)
[36]	Son, S. M., Lim, H. S., Paik, I. H., & Ahn, J. H., “A study on critical depth of cuts in micro grooving.”, Journal of Mechanical Science and Technology, 17(2), 239-245. (2003).
[37]	Gillespie, LaRoux K., ‘The Battle of the Burr: New Strategies and New Tricks’, Manufacturing Engineering, 1 February 1996.
[38]	Ko, Sung-Lim, and David A. Dornfeld, ‘A Study on Burr Formation Mechanism’, Journal of Engineering Materials and Technology, 113 (1991), 75–87 <https://doi.org/10.1115/1.2903385>
[39]	Hashimura, M., K. Ueda, D. Dornfeld, and K. Manabe, ‘Analysis of Three-Dimensional Burr Formation in Oblique Cutting’, CIRP Annals, 44 (1995), 27–30 <https://doi.org/10.1016/S0007-8506(07)62268-9>
[40]	Ko, Sung-Lim, and David A. Dornfeld, ‘Burr Formation and Fracture in Oblique Cutting’, Journal of Materials Processing Technology, 62 (1996), 24–36 <https://doi.org/10.1016/0924-0136(95)02125-6>.
[41]	Hashimura, M., Y. P. Chang, and David Dornfeld, ‘Analysis of Burr Formation Mechanism in Orthogonal Cutting’, Journal of Manufacturing Science and Engineering, 121 (1999), 1–7 <https://doi.org/10.1115/1.2830569>.
[42]	Lee, K., & Dornfeld, D. A. (2005). Micro-burr formation and minimization through process control. Precision Engineering, 29(2), 246–252. https://doi.org/10.1016/j.precisioneng.2004.09.002
[43]	Fang, F. Z., Wu, H., Liu, X. D., Lim, G. C., Liu, Y. C., and Ng, S. T., "Fabrication of micro grooves", ASPE 18th  Annual Meeting, Portland, USA, Oct. (2003).
[44]	Toropov, A., & Ko, S. L., “Burr formation model for orthogonal cutting and its experimental verification.”, [J] (2000).
[45]	Lee, Kiha, and David A. Dornfeld, ‘Micro-Burr Formation and Minimization through Process Control’, Precision Engineering, 29 (2005), 246–52 <https://doi.org/10.1016/j.precisioneng.2004.09.002>
[46]	Dyu Le, Jong-Min Lee, Su-Jin Kim, Dong-Yoon Lee, "Exit burr and break off analysis in micro grooving pyramid pattern.", (2009).
[47]	Le, Duy, Jong-Min Lee, Su-Jin Kim, Dong-Yoon Lee, and Seok-Woo Lee, ‘Burr Analysis in Microgrooving’, The International Journal of Advanced Manufacturing Technology, 50 (2010), 569–77 <https://doi.org/10.1007/s00170-010-2516-7>.
[48]	Ding, X., D. L. Butler, G. C. Lim, C. K. Cheng, K. C. Shaw, K. Liu, and others, ‘Machining with Micro-Size Single Crystalline Diamond Tools Fabricated by a Focused Ion Beam’, Journal of Micromechanics and Microengineering, 19 (2009), 025005 <https://doi.org/10.1088/0960-1317/19/2/025005>.
[49]	Chern, Gwo-Lianq, ‘Study on Mechanisms of Burr Formation and Edge Breakout near the Exit of Orthogonal Cutting’, Journal of Materials Processing Technology, 176 (2006), 152–57 <https://doi.org/10.1016/j.jmatprotec.2006.03.127>
[50]	THIRD WAVE AdvantEdge TM, "Prediction of Burr Formation", case study #10。
[51]	Min, S., Dornfeld, D., Kim, J., & Shyu, B. (2001). Finite element modeling of burr formation in metal cutting. Machining Science and Technology, 5, 307–322. https://doi.org/10.1081/MST-100108617
[52]	Ko, S.-L., & Dornfeld, D. A. (1996). Burr formation and fracture in oblique cutting. Journal of Materials Processing Technology, 62(1), 24–36. https://doi.org/10.1016/0924-0136(95)02125-6
[53]	Zhu, Y., Wang, G., Wang, Z., & Fan, S., “Finite element model and mechanism analysis for burr formation in metal cutting.”, Journal of Basic Science & Engineering. (2005).
[54]	Toropov, Andrey, and Sung-Lim Ko, ‘A Model of Burr Formation in the Feed Direction in Turning’, International Journal of Machine Tools and Manufacture, 46 (2006), 1913–20 <https://doi.org/10.1016/j.ijmachtools.2006.01.035>.
[55]	Deng, Wen, C Li, Wei Xia, and X.Z. Wei, ‘Finite Element Modeling of Burr Formation in Orthogonal Metal Cutting’, Advanced Materials Research, 53–54 (2008), 71–76 <https://doi.org/10.4028/www.scientific.net/AMR.53-54.71>
[56]	Deng, W. J., W. Xia, and Y. Tang, ‘Finite Element Simulation for Burr Formation near the Exit of Orthogonal Cutting’, The International Journal of Advanced Manufacturing Technology, 43 (2009), 1035 <https://doi.org/10.1007/s00170-008-1784-y>
[57]	Yan, Jiwang, Takashi Oowada, Tianfeng Zhou, and Tsunemoto Kuriyagawa, ‘Precision Machining of Microstructures on Electroless-Plated NiP Surface for Molding Glass Components’, Journal of Materials Processing Technology, 209 (2009), 4802–8 <https://doi.org/10.1016/j.jmatprotec.2008.12.008>
[58]	Yan, Ji Wang, Takeo Sasaki, Junichi Tamaki, Akihiko Kubo, and T. Sugino, ‘Chip Formation Behaviour in Ultra-Precision Cutting of Electroless Nickel Plated Mold Substrates’, Key Engineering Materials, 257–258 (2004), 3–8 <https://doi.org/10.4028/www.scientific.net/KEM.257-258.3>
[59]	Lee, Jong-Min, Tae-Jin Je, Doo-Sun Choi, Seok-Woo Lee, Duy Le, and Su-Jin Kim, ‘Micro Grooving Simulation and Optimization in the Roughing Stage’, International Journal of Precision Engineering and Manufacturing, 11 (2010), 361–68 <https://doi.org/10.1007/s12541-010-0041-0>
[60]	Deng, W. J., Xie, Z. C., Lin, P., & Xu, T. K., “Study on burr formation at the top edge in rectangular groove cutting”, Advances in Materials Science & Engineering, (2012).
[61]	Toropov, Andrey, and Sung-Lim Ko, ‘Burr formation model for orthogonal cutting and its experimental verification’, (2000)
[62]	Toropov, A. A., S. L. Ko, and J. M. Lee, ‘A New Burr Formation Model for Orthogonal Cutting of Ductile Materials’, CIRP Annals, 55 (2006), 55–58 <https://doi.org/10.1016/S0007-8506(07)60365-5>

[63] 曲海軍,“金屬切削毛刺形成的數值模擬及控制技術研究”,(Doctoral dissertation, 江蘇大学),(2011).
[64] 曲海軍,“直角切削毛刺的形成机理及其模拟”,(Doctoral dissertation, 江苏大学), (2008).
[65] 賴炳宏,”微切削之毛邊形成機制之探討”,淡江大學機械與機電工程學系碩士班學位論文,P65-69,(2010)
[66] 葛瑞齡,“鑽石刀具對延性金屬之微切削與毛邊形成機制之模擬與研究”,淡江大學機械與機電工程學系碩士班學位論文,P57-59,(2012).
[67] 游文宏,“鑽石車削中刀具磨耗及切削參數對切屑及毛邊形成之影響”,淡江大學機械與機電工程學系碩士班學位論文, P82-86, (2013).
[68] Shintani, K., M. Ueki, and Y. Fujimura, ‘Optimum Tool Geometry of CBN Tool for Continuous Turning of Carburized Steel’, International Journal of Machine Tools and Manufacture, 29 (1989), 403–13 <https://doi.org/10.1016/0890-6955(89)90009-6>
[69] Shaw, M.C., “Metal cutting principles”, Oxford Univer-sity Press, ISBN 0-19-859002-4(1984)
[70] Fang, F. Z., Wu, H., Liu, X. D., Lim, G. C., Liu, Y. C., and Ng, S. T., "Fabrication of micro grooves",ASPE 18th Annual Meeting, Portland, 26-31 Octobre (2003).
[71] 趙清亮、郭兵、杨辉& 王義龍,”金剛石飛切加工微结構表面的工藝參數優化”,光學精密工程, 17(10), 2512-2519. (2009).
[72] 陳玉龍,”飛刀切削加工中毛刺的形成過程仿真與實驗研究” ,哈爾濱工業大學碩士研究論文,第四章,p64-67 (2014)
[73] Rahman, K. M. R., Rahman, M., Neo, K. S., Sawa, M., & Maeda, Y.(2006). Microgrooving on electroless nickel plated materials using a 
single crystal diamond tool. The International Journal of Advanced Manufacturing Technology, 27(9–10), 911–917. https://doi.org/10.1007/s00170-004-2273-6
[74] Akiyama, T. (2011). Precision roll turning lathe. US, US 8020268 B2.
[75] Koo, J. Y., Kim, J. S., Kang, I. S., & Kim, P. H., “Burr Characteristics of Micro-Grooving in High Speed Machining” Prceedings of the International Conference Manufacturing Technology Engineers.(2012)
[76] Moriwaki, T., & Shamoto, E. (1995). Ultrasonic Elliptical Vibration Cutting. CIRP Annals, 44(1), 31–34. https://doi.org/10.1016/S0007-8506(07)62269-0
[77] Shamoto, Eiji, and Toshimichi Moriwaki, ‘Study on Elliptical Vibration Cutting’, CIRP Annals, 43 (1994), 35–38 <https://doi.org/10.1016/S0007-8506(07)62158-1>
[78] Moriwaki, Toshimichi, Eiji Shamoto, and Kenji Inoue, ‘Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration’, CIRP Annals, 41 (1992), 141–44 <https://doi.org/10.1016/S0007-8506(07)61171-8>
[79] Kim, Gi Dae, and Byoung Gook Loh, ‘Characteristics of Chip Formation in Micro V-Grooving Using Elliptical Vibration Cutting’, Journal of Micromechanics and Microengineering, 17 (2007), 1458 <https://doi.org/10.1088/0960-1317/17/8/007>
[80] 簡國諭,”超音波振動輔助車削之研究” ,國立中正大學機械工程學系碩士論文(2002),p73-75.
[81] Ma, Chunxiang, E. Shamoto, T. Moriwaki, and Lijiang Wang, ‘Study of Machining Accuracy in Ultrasonic Elliptical Vibration Cutting’, International Journal of Machine Tools and Manufacture, 


44 (2004), 1305–10 <https://doi.org/10.1016/j.ijmachtools.2004.04.014>
[82] Kim, Gi Dae, and Byoung Gook Loh, ‘An Ultrasonic Elliptical Vibration Cutting Device for Micro V-Groove Machining: Kinematical Analysis and Micro V-Groove Machining Characteristics’, Journal of Materials Processing Technology, 190 (2007), 181–88 <https://doi.org/10.1016/j.jmatprotec.2007.02.047>
[83] Kim, Gi Dae, and Byoung Gook Loh, ‘Characteristics of Elliptical Vibration Cutting in Micro-V Grooving with Variations in the Elliptical Cutting Locus and Excitation Frequency’, Journal of Micromechanics and Microengineering, 18 (2008), 025002 <https://doi.org/10.1088/0960-1317/18/2/025002>
[84] Kim, Gi Dae, and Byoung Gook Loh, ‘Machining of Micro-Channels and Pyramid Patterns Using Elliptical Vibration Cutting’, The International Journal of Advanced Manufacturing Technology, 49 (2010), 961–68 <https://doi.org/10.1007/s00170-009-2451-7>
[85] L&ecirc;, Duy, Jong-Min Lee, Su-Jin Kim, and Dong-Yoon Lee, ‘A Study on Micro Burr Mechanism in Grooving Prism & Pyramid Pattern’, 2017
[86] Le, Duy, Jong-Min Lee, Su-Jin Kim, Dong-Yoon Lee, and Seok-Woo Lee, ‘Burr Analysis in Microgrooving’, The International Journal of Advanced Manufacturing Technology, 50 (2010), 569–77 <https://doi.org/10.1007/s00170-010-2516-7>.
[87] Je, Tae-Jin, Eun-Chae Jeon, Sang-Cheon Park, Doo-Sun Choi, Kyung-Hyun Whang, and Myung-Chang Kang, ‘Improvement of Machining Quality of Copper-Plated Roll Mold by Controlling Temperature Variation’, Transactions of Nonferrous Metals Society 


of China, 21 (2011), s37–41 <https://doi.org/10.1016/S1003-6326(11)61057-1>
[88] Hitchiner, M.P., and J Wilks, ‘Some Remarks on the Chemical Wear of Diamond and Cubic BN during Turning and Grinding’, Wear, 114 (1987), 327–38 <https://doi.org/10.1016/0043-1648(87)90120-7>
[89] Paul, Ed, Chris J. Evans, Anthony Mangamelli, Michael L. McGlauflin, and Robert S. Polvani, ‘Chemical Aspects of Tool Wear in Single Point Diamond Turning’, Precision Engineering, 18 (1996), 4–19 <https://doi.org/10.1016/0141-6359(95)00019-4>
[90] Sung-jung, Heo, ‘Micro Cutting of Tungsten Carbideswith Sem Direct Observation Method’, KSME International Journal, 18 (2004), 770–79 <https://doi.org/10.1007/BF02990295>
[91] 廖怜怡, “單點鑽石車削碳化鎢之研究”, 臺灣大學機械工程學研究所學位論文, P89-101,(2011).
[92] Suzuki, N., S. Masuda, M. Haritani, and E. Shamoto, ‘Ultraprecision Micromachining of Brittle Materials by Applying Ultrasonic Elliptical Vibration Cutting’, in Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004., 2004, pp. 133–38 <https://doi.org/10.1109/MHS.2004.1421290>
[93] 北嶋孝之、奥山繁樹、由井明紀,“Study on micro v-groove planning of cobalt-free tungsten carbide using diamond tools.”, 砥粒加工學會學術講演論文集, 227-232. (2013).
[94] Yui, A., Kitajima, T., Yoshitomi, K., Okahata, G., Okuyama, S., & Sumiya, H., et al., ” Study on V-groove face turning of cobalt-free tungsten carbide using diamond tools:1st report: Investigation of tool life.”, Proceedings of JSPE Semestrial Meeting (Vol.2012, pp.905-906). The Japan Society for Precision Engineering. (2012).


[95] Fujiwara, Junsuke, K Wakao, and T Miyamoto, ‘Influence of Tungsten-Carbide and Cobalt on Tool Wear in Cutting of Cemented Carbides with Polycrystalline Diamond Tool’, 7 (2013), 433–38
[96] Takayuki Kitajima, Shigeki Okuyama, and Akinori Yui, ‘Basic Study on Micro V-Groove Cutting of Tungsten Carbide Using Diamond Tools’, Advanced Materials Research, 565 (2012), 517–22 <https://doi.org/10.4028/www.scientific.net/AMR.565.517>
[97] TakayukiKitajima, Shigeki Okuyama, and Akinori Yui, ‘Micro-V-Groove Cutting of Cobalt-Free Tungsten Carbide Using Diamond Tools’, Journal of the Japan Society for Abrasive Technology, 58 (2014), 103–8 <https://doi.org/10.11420/jsat.58.103>
[98] AkinoriYui, Takayuki Kitajima, Peter Krajnik, Katsuko Harano, Hitoshi Sumiya, and Hajime Ono, ‘Effect of Cutting Fluid on Diamond Tool Life under Micro V-Groove Turning of Cobalt-Free Tungsten Carbide’, Advanced Materials Research, 1017 (2014), 181–86 <https://doi.org/10.4028/www.scientific.net/AMR.1017.181>
[99] 楊明仁,”LCD背光模組產品介紹”,台灣工業銀行產業研討會,p1-3(2002)。
[100] 田大昌、溫景發、林麗娟、劉文亮,”LCD反射式增亮膜之為結構分析”,工研院光電/顯示器專欄,工業材料雜誌第232期(2006)。
[101] Hwang, Eun Soo, Sin Kwon, Dongmin Kim, Young Tae Cho, and Yoon Gyo Jung, ‘Positional Accuracy of Micropatterns in the Roll-to-Roll Imprinting Process Using a Wrapped Roll Mold’, Journal of Mechanical Science and Technology, 29 (2015), 1697–1702 <https://doi.org/10.1007/s12206-015-0342-4>
 
[102] HI-LIGHT TEK.CO.,LTD公司網站資料。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信