淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2609201115413400
中文論文名稱 放寬T-S模糊離散系統穩定設計之條件
英文論文名稱 Relaxed stabilization conditions for a T-S fuzzy discrete system
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 李嘉穎
研究生英文姓名 Jia-Ying Li
學號 696372001
學位類別 碩士
語文別 中文
口試日期 2011-07-12
論文頁數 45頁
口試委員 指導教授-孫崇訓
委員-黃志鵬
委員-王銀添
委員-孫崇訓
中文關鍵字 T-S切換式模糊系統  控制輸入限制  最大狀態間距  平行分部補償  片段連續型李亞普諾夫二次式 
英文關鍵字 Switching T-S fuzzy system  input constraint  the maximal distance of the two continuous state space  parallel distributed compensation  piecewise quadratic Lyapunov function 
學科別分類 學科別應用科學機械工程
中文摘要 本論文我們放寬T-S模糊離散系統穩定化設計之條件。我們利用切換式T-S離散模糊系統並且狀態空間會分割成數個局部空間。利用最大狀態間距的概念及片段連續型李亞普諾夫二次式(piecewise quadratic Lyapunov function)在穩定化設計的過程中將可放寬切換式T-S模糊系統的穩定條件。為了避免計算最大狀態間距及設計控制器時疊代運算的問題,我們使用控制輸入限制的方法計算出最大狀態間距。透過MATLAB LMI toolbox,將可以同時設計出合適的控制器增益值以及找到正定矩陣 。最後,透過數值及實際自走車的模擬證明論文理論為有效的方法。
英文摘要 We relax stabilization conditions for a T-S fuzzy discrete system in this thesis. We use switching T-S fuzzy system and the state space of the T-S fuzzy system is divided into several subregions. We can use the concept of the maximal distance of the two continuous state space and the piecewise quadratic Lyapunov function to relax stabilization conditions for a switching T-S fuzzy system. In order to avoid the problem of the maximal distance of the two continuous state space and control gains iteration computing, we use the method of the constraint of a control input to count maximal distance of the two continuous state space. We design suitable the controller and find out the positive definite matrices at the same time by using MATLAB LMI toolbox. Finally, we utilize the simulations of numerical example and practical example to prove the effectiveness of this method.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
第一章 緒論 1
1.1 研究背景與目的 1
1.2 論文具體成果 4
1.3 論文章節架構 4
第二章 T-S模糊系統穩定性分析及穩定化設計 6
2.1 T-S模糊系統穩定條件 6
2.2 模糊控制器設計 9
2.3 片段連續型李亞普諾夫二次式 13
2.4 切換式T-S模糊系統 17
2.5 結論 19
第三章 放寬系統穩定化設計之條件 20
3.1 最大狀態間距 21
3.2 控制輸入限制條件 25
3.3 控制輸入限制估算最大狀態間距 28
3.4 結論 30
第四章 模擬 32
4.1 數值模擬 32
4.2 自走車動態系統之轉換 34
4.3 自走車模擬 36
4.4 結論 41
第五章 總結 42
參考文獻 43
圖目錄
圖2.1 模糊規則前件部 7
圖2.2 平行分佈補償示意圖 9
圖2.3 所對應之模糊集合 14
圖2.4 模糊集合及分割的子空間 15
圖3.1 歸屬函數 22
圖3.2 觸發區域與 =1之關係圖 22
圖4.1 數值模擬之歸屬函數 32
圖4.2 狀態空間 33
圖4.3 二維收斂軌跡圖 34
圖4.4 自走車運動系統 35
圖4.5 自走車系統之模糊建模 36
圖4.6原模型狀態變數平面圖 38
圖4.7 近似模型狀態變數平面圖 38
圖4.8 近似模型與原模型之誤差平面圖 39
圖4.9 自走車收斂軌跡圖一 40
圖4.10 自走車收斂軌跡圖二 41
參考文獻 參考文獻
[1] G. Feng, “A Survey on Analysis and Design of Model-Based Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676-697, 2006.
[2] K. Tanaka, and T. Kosaki, “Design of a stable fuzzy controller for an articulated vehicle,” IEEE Trans. Syst., Man, and Cybern. B, vol. 27, no. 3, pp. 552-558, 1997.
[3] T. H. S. Lee, S. J. Chang, and T. Wei, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491-501, 2004.
[4] P. Shahmaleki, and M. Mahzoon, “Designing a hierarchical fuzzy controller for backing-up a four wheel autonomous robot,” in Proc. American Control Conference, pp. 4893-4897, 2008.
[5] K. Tanaka, and M. Sugeno, “Stability analysis and design of fuzzy control system,” Fuzzy Sets and Syst., vol. 45, pp. 135-156, 1992.
[6] K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach, New York: Wiley, 2001.
[7] W. J. Wang, and C. H. Sun, “Relaxed stability and stabilization conditions for a T-S fuzzy discrete system,” Fuzzy Sets and Syst., vol. 156, no. 2, pp. 208-225, 2005.
[8] M. Johansson, A. Rantzer, and K. E. Årzén, “Piecewise quadratic stability of fuzzy systems” IEEE Trans. Fuzzy Syst., vol. 7, pp. 713-722, 1999.
[9] L. Wang, and G. Feng, “Piecewise controller design of discrete time fuzzy systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, pp. 682-686, 2004.
[10] D. J. Choi, and P. G. Park, “ state-feedback controller design for discrete-time fuzzy systems using fuzzy weighting-dependent Lyapunov functions,” IEEE Trans. Fuzzy Syst., vol. 11, pp. 271-278, 2003.
[11] K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov Function approach to stabilization of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 11, pp. 582-589, 2003.
[12] W. J. Wang, Ying-Jen Chen, and C. H. Sun, “Relaxed stabilization criteria for discrete-time T-S fuzzy systems based on switching fuzzy model and piecewise Lyapunov function,” IEEE Trans. Syst., Man, and Cybern. B, vol. 37, no. 3, pp.551-559, 2007.
[13] S. M. Wu, F. M. Yu, C. C. Sun, and H. Y. Chung, “Static Output Feedback Fuzzy Controller Design via a Mixed Approach for Regional T-S Fuzzy System,” in Proc. IEEE Int. Conf., Syst., Man, Cybern., 2006, pp. 3074-3079.
[14] G. Feng, C. L. Chen, D. Sun, and Y. Zhu, “ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 94-105, 2005.
[15] H. O. Wang, K Tanaka, M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, Feb. 1996.
[16] D. J. Choi, and P. G. Park, “Guaranteed cost controller design for discrete-time switching fuzzy system,” IEEE Trans. Syst., Man, and Cybern., B, vol. 34, no. 1, pp. 110-119, 2004.
[17] K. Tanaka, M. Iwasaki, and H. O. Wang, “Switching control of an R/C hovercraft: stabilization and smooth switching,” IEEE Trans. Syst., Man, and Cybern. B, vol. 31, no.6, pp. 853-863, 2001.
[18] K. Tanaka and M. Sano, “Trajectory stabilization of a model car via fuzzy control”, Fuzzy Sets and Systems, vol. 70, pp. 155-170, 1995.
[19] W. J. Wang, and C. H. Sun, “A Relaxed stability criterion for T-S fuzzy discrete system,” IEEE Trans. Syst., Man, and Cybern. B, vol. 34, pp. 2155-2158, 2004.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-10-03公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信