§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2608201913254400
DOI 10.6846/TKU.2019.00898
論文名稱(中文) 二價鐵和三價鐵置換和沉澱反應解離Cu-EDTA錯合鍵結增加銅去除率之研究
論文名稱(英文) Replacement and precipitation reactions driven by Fe(II) and Fe(III) through decoupling Cu-EDTA complexes for enhanced Cu removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 陳耀弘
研究生(英文) Yao-Hung Chen
學號 606480159
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-07-17
論文頁數 43頁
口試委員 指導教授 - 李奇旺(chiwangli@gmail.com)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 彭晴玉(cypeng@gms.tku.edu.tw)
關鍵字(中)
金屬錯合物
二價鐵
三價鐵
置換反應
沉澱反應
關鍵字(英) Copper
Metal complex
Ferric
Ferrous
Replacement
Precipitation
第三語言關鍵字
學科別分類
中文摘要
由於金屬錯合物 (e.g., Cu-EDTA) 的高溶解性和高穩定性,所以並不容易透過沉澱處理金屬錯合物。因此,本研究在探討在不同的pH值下Fe和Cu之間與EDTA結合的競爭,並且在不同的水化學機制條件下,像是pH值、鐵的劑量和反應時間,研究透過二價鐵和三價鐵的置換沉澱反應過程有效的處理Cu-EDTA錯合物的可能性。研究中發現Fe(III) 在酸性pH值區域可以有效的置換Cu-EDTA錯合物中的Cu離子,但在升高的pH值下氫氧化鐵會沉澱,而有時間依賴性的Fe(III)系統會造成降低Cu去除率的影響。另一方面,Fe(II) 在鹼性pH值區域有效的置換Cu,並且Cu的置換和沉澱反應可以同時在鹼性pH區域發生,Cu的去除效率也不會跟沉澱反應的時間有關係。根據上面的結論,Fe(II)會比Fe(III)更適合作為置換沉澱反應中的置換劑。
  雖然銅離子透過置換沉澱反應過程與7mM的Fe(II) 反應10分鐘就可以完全去除,但是EDTA錯合物仍然存在於溶液中。為了去除EDTA錯合物,使用Fenton process 處理已經透過置換沉澱反應處理過的溶液。在本研究中,將溶液先Fenton process處理再使用置換沉澱反應處理 (表示為 Fenton/沉澱) 和相反的程序 (表示為置換/沉澱/Fenton) 進行比較TOC和Cu 的去除率。Fenton/沉澱 程序將Cu離子完全的去除,置換/沉澱/Fenton程序只有去除40-66% 的Cu離子。然而,置換/沉澱/Fenton程序能將TOC去除得更好,這是因為Cu也可以當作Fenton反應劑。基於上面的結果,可以得知Fenton/沉澱程序更適合有效的去除Cu離子。
英文摘要
Treating metal complexes (e.g., Cu-EDTA) by precipitation is difficult because of their high solubility and stabilities. Therefore, this study focused on the competition between Fe and Cu complexes with EDTA under various pH values, and the possibility for the effective treatment of Cu-EDTA complexes by replacement/precipitation processes using ferric and ferrous iron species were investigated under various water chemistry conditions, such as pH levels, iron doses, and reaction times. Fe(III) was found to be effective for replacing Cu ions in Cu-EDTA complexes at an acidic pH region, but the precipitation of ferric hydroxides at elevated pH values gave a detrimental effect on Cu removal because of its time dependency. In contrast, Fe(II) replaced Cu effectively at an alkaline pH region where both replacement and precipitation of Cu can take place simultaneously. Cu removal was effective and independent of precipitation time when Fe(II) was dosed. According to the above conclusion, Fe(II) is more suitable as a replacement agent in the replacement/precipitation reaction than Fe(III).
Although the Cu can be removed completely with 7 mM of Fe(II) for 10 min by the replacement/precipitation process, the EDTA complexes still exist in the solution. In order to remove EDTA, Fenton process was employed to treat the treated water after the replacement and precipitation reactions. In this study, the replacement/precipitation reaction after the Fenton process (denoted Fenton/precipitation process) was compared to the reverse reaction sequence (denoted as replacement/precipitation/Fenton process) of Cu and TOC removal. The former achieved complete Cu removal while the latter removed only 40-66% of Cu. However, the latter achieves a slightly better TOC removal because the Cu can act as Fenton agents. Based on the results, the replacement/precipitation of the Fenton process was more suitable for effective Cu removal.
第三語言摘要
論文目次
List of Figure	V
Chapter 1 Introduction	1
Study background	1
Chapter 2 Background information	3
2.1 Chelated-copper wastewater	3
2.2 Chemical precipitation	4
2.3 Ion-exchange method	5
2.4 Fenton process	6
2.5 Replacement/precipitation reactions	8
Chapter 3 Methods and Materials	10
3.1 Chemical and materials	10
3.2 Experimental methods	10
3.2.1 Adsorption experiments (per-formed flocs)	10
3.2.2 Effects of pH	11
3.2.3 Effects of Fe dose	11
3.2.4 Effects of replacement and precipitation times	12
3.2.5 Fenton process	12
3.3 Analytical methods	13
3.3.1 Flame atomic absorption spectrometry	13
3.3.2 TOC analysis	13
Chapter 4 Results and discussion	14
4.1	Chemical equilibrium modeling	14
4.2	Adsorption experiments (per-formed flocs)	18
4.3	Effects of pH	22
4.4	Effects of Fe dose	25
4.5	Effects of replacement time	29
4.6	Effects of precipitation time	30
4.7	Fenton process	34
Chapter 5 Conclusion and suggestions	37
5.1 Conclusion	37
5.2 Suggestions	38
Reference	39

List of Figure
Fig. 1 EDTA speciation in Fe(III)- based system as a function of pH. Modeled using Mineql+. Cu concentration is 1mM. EDTA:Cu:Fe(III) molar ratio of 1:1:1.	15
Fig. 2 Cu speciation in Fe(III)- based system as a function of pH. Modeled using Mineql+. Cu concentration is 1mM. EDTA:Cu:Fe(III) molar ratio of 1:1:1.	16
Fig. 3 Fe(III) speciation in Fe(III)- based system as a function of pH. Modeled using Mineql+. Cu concentration is 1mM. EDTA:Cu:Fe(III) molar ratio of 1:1:1.	16
Fig. 4 EDTA in Fe(II)-EDTA system as a function of pH. Modeled using Mineql+. Cu concentration is 1mM. EDTA:Cu:Fe(III) molar ratio of 1:1:1.	17
Fig. 5 Cu and TOC removals from Cu/EDTA solutions as a function of pH using pre-formed Ferric hydroxide flocs. Experimental conditions: Cu concentration = 1 mM; Cu:EDTA:Fe molar ratio = 1:1:5.	19
Fig. 6 Cu and TOC removals from Cu/EDTA solutions as a function of pH using pre-formed Ferrous hydroxide flocs. Experimental conditions: Cu concentration = 1 mM; Cu:EDTA:Fe molar ratio = 1:1:5.	20
Fig. 7 Effect of TOC removal on the removal efficiencies of Cu	20
Fig. 8 X-ray photoelectron spectroscopy analyses of three solid samples containing Cu species. (A) Survey spectra and (B-D) Cu 2p3/2 spectra and their convolution of (B) sample A, (C) sample B, and (D) sample C.	21
Fig. 9 Effects of pH on the removal efficiencies of Cu. Cu:EDTA:Fe molar ratio= 1:1:5. Initial Cu concentration = 1 mM.	23
Fig. 10 Effects of pH on the removal efficiencies of TOC. Cu:EDTA:Fe molar ratio= 1:1:5. Initial Cu concentration = 1 mM.	24
Fig. 11 Effects of pH on the removal efficiencies of dissolved Fe. Cu:EDTA:Fe molar ratio= 1:1:5. Initial Cu concentration = 1 mM.	25
Fig. 12 Effect of Cu:EDTA:Fe(III) molar ratio on the removal efficiencies of Cu and TOC, and percentage of Fe precipitated. Experimental condition: Initial Cu concentration = 1 mM; pH 3 and reaction time of 10 min for replacement reaction; pH of 8 and reaction time of 20 min for precipitation reaction.	27
Fig. 13 Effect of dissolved Fe on the removal efficencies of Cu.	27
Fig. 14 Effect of Cu:EDTA:Fe(II) molar ratio on the removal efficiencies of Cu and TOC, and percentage of Fe precipitated. Experimental condition: Initial Cu concentration = 1 mM; pH 3 and reaction time of 10 min for replacement reaction; pH of 8 and reaction time of 20 min for precipitation reaction.	28
Fig. 15 Effects of precipitation time on the removal efficiencies of Cu, dissolved Fe and TOC.	29
Fig. 16 Effects of precipitation time on the removal efficiencies of Fe(III), Cu and TOC, and the percentage of Fe precipitated. Replacement pH and time were 3.0 for 10 min, respectively. Precipitation pH = 8. Cu:EDTA:Fe(III) molar ratio = 1:1:5. Initial Cu concentration = 1 mM.	31
Fig. 17 Effect of Cu removed on the residual of Fe.	32
Fig. 18 Effects of precipitation time on the removal efficiencies of Cu and TOC, and the percentage of Fe precipitated. Replacement pH and time were 3.0 for 10 min, respectively. Precipitation pH = 8. Cu:EDTA:Fe(II) molar ratio = 1:1:5. Initial Cu concentration = 1 mM.	33
Fig. 19 Effects of metal-to-H2O2 molar ratio on the removal of TOC. In the Fenton/precipitaiton reactions, the Fenton process occurred at pH 3.0 with a reaction time of 1 hr and then, precipitation reaction proceeded at pH 7.0 with a reaction time of 30 min. Initial Cu and EDTA concentrations were the same as 1 mM.	36
Fig. 20 Effects of metal-to-H2O2 molar ratio on the removal of Cu. In the Fenton/precipitation reactions, the Fenton process occurred at pH 3.0 with a reaction time of 1 hr and then, precipitation reaction proceeded at pH 7.0 with a reaction time of 30 min. Initial Cu and EDTA concentrations were the same as 1 mM.	36
參考文獻
[1]     行政院環保署土壤及地下水污染整治基金管理會,農地,全國農地重金屬汙染潛勢調查。2019年7月2日,取自https://sgw.epa.gov.tw/public/prevent/04。
[2]	放流水標準,中華民國 108 年 4 月 29 日行政院環境保護署環署水字第 1080028628 號令修正發布第二條、第二條之一條文.
[3]	灌溉用水水質標準,中華民國 92年11月7日行政院農業委員會農林字第0920031524號公告訂定發布全文.
[4]	R.S.Juang, S.W.Wang, Metal recovery and EDTA recycling from simulated washing effluents of metal-contaminated soils, Water Res. 34 (2000) 3795–3803.
[5]	TPCA台灣電路板協會,2018台灣PCB產業鏈總產值達9,583億新台幣成長達5.6%。2019年2月27日,取自
https://www.tpca.org.tw/Message/MessageView?id=3833&menutype=0&sitemenuid=15。
[6]	經濟部工業局, 行業製程減廢及汙染防制技術-印刷電路板 製造業行業說明.
[7]	H.He, D.Wu, L.Zhao, C.Luo, C.Dai, Y.Zhang, Sequestration of chelated copper by structural Fe(II): Reductive decomplexation and transformation of CuII-EDTA, J. Hazard. Mater. 309 (2016) 116–125.
[8]	F.Fu, Q.Wang, Removal of heavy metal ions from wastewaters: a review., J. Environ. Manage. 92 (2011) 407–18.
[9]	S.Jiang, F.Fu, J.Qu, Y.Xiong, A simple method for removing chelated copper from wastewaters: Ca(OH)2-based replacement-precipitation, Chemosphere. 73 (2008) 785–790.
[10]	章日行,周志豪,2005,“利用超音波及電鍍技術處理螯合性含銅廢水”, 中華民國環境工程學會2005廢水處理技術研討會,台南。
[11]	J.C.Lou, Y.J.Huang, J.Y.Han, Treatment of printed circuit board industrial wastewater by Ferrite process combined with Fenton method, J. Hazard. Mater. 170 (2009) 620–626.
[12]	Y.Ku, I.L.Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res. 35 (2001) 135–142.
[13]	O.Tünay, N.I.Kabdaşli, Hydroxide precipitation of complexed metals, Water Res. 28 (1994) 2117–2124.
[14]	Q.Chen, Z.Luo, C.Hills, G.Xue, M.Tyrer, Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide, Water Res. 43 (2009) 2605–2614.
[15]	K.A.Baltpurvins, R.C.Burns, G.A.Lawrance, Heavy metals in wastewater: Modelling the hydroxide precipitation of copper(II) from wastewater using lime as the precipitant, Waste Manag. 16 (1996) 717–725.
[16]	S.A.Mirbagheri, S.N.Hosseini, Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse, Desalination. 171 (2005) 85–93.
[17]	S.Y.Kang, J.U.Lee, S.H.Moon, K.W.Kim, Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere. 56 (2004) 141–147.
[18]	E.Pehlivan, T.Altun, Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80, J. Hazard. Mater. 140 (2007) 299–307.
[19]	A.Da̧browski, Z.Hubicki, P.Podkościelny, E.Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere. 56 (2004) 91–106.
[20]	C.Shan, Z.Xu, X.Zhang, Y.Xu, G.Gao, B.Pan, Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II), Chemosphere. 193 (2018) 1235–1242.
[21]	S.Jiang, J.Qu, Y.Xiong, Removal of chelated copper from wastewaters by Fe2+-based replacement-precipitation, Environ. Chem. Lett. 8 (2010) 339–342.
[22]	F.Fu, L.Xie, B.Tang, Q.Wang, S.Jiang, Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater, Chem. Eng. J. 189–190 (2012) 283–287.
[23]	H.Shemer, Y.K.Kunukcu, K.G.Linden, Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes, Chemosphere. 63 (2006) 269–276.
[24]	B.G.Kwon, D.S.Lee, N.Kang, J.Yoon, Characteristics of p-chlorophenol oxidation by Fenton’s reagent, Water Res. 33 (1999) 2110–2118.
[25]	A.Babuponnusami, K.Muthukumar, Degradation of Phenol in Aqueous Solution by Fenton, Sono-Fenton and Sono-photo-Fenton Methods, Clean - Soil, Air, Water. 39 (2011) 142–147.
[26]	F.J.Benitez, J.L.Acero, F.J.Real, F.J.Rubio, A.I.Leal, The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Res. 35 (2001) 1338–1343.
[27]	X.R.Xu, X.Y.Li, X.Z.Li, H.BinLi, Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes, Sep. Purif. Technol. 68 (2009) 261–266.
[28]	P.Maletzky, R.Bauer, Pii: so0456535(98)00093-9, 37 (1998) 899–909.
[29]	J.Li, Z.Luan, L.Yu, Z.Ji, Pretreatment of acrylic fiber manufacturing wastewater by the Fenton process, Desalination. 284 (2012) 62–65.
[30]	Z.Xu, G.Gao, B.Pan, W.Zhang, L.Lv, A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation, Water Res. 87 (2015) 378–384.
[31]	X.Guan, X.Jiang, J.Qiao, G.Zhou, Decomplexation and subsequent reductive removal of EDTA-chelated CuII by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms, J. Hazard. Mater. 300 (2015) 688–694.
[32]	F.Liu, C.Shan, X.Zhang, Y.Zhang, W.Zhang, B.Pan, Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron, J. Hazard. Mater. 321 (2017) 290–298.
[33]	H.J.Choi, Application of surface modified sericite to remove anionic dye from an aqueous solution, Environ. Eng. Res. 22 (2017) 312–319.
[34]	C.C.Wang, C.C.Wang, Adsorption characteristics of metal complexes by chelated copolymers with amino group, React. Funct. Polym. 66 (2006) 343–356.
[35]	J.H.Kim, B. minAn, D.H.Lim, J.Y.Park, Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation, Water Res. 132 (2018) 200–210.
[36]	Z.Zhao, W.Dong, H.Wang, G.Chen, J.Tang, Y.Wu, Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes, J. Hazard. Mater. 350 (2018) 128–135.
[37]	F.Fu, B.Tang, Q.Wang, J.Liu, Degradation of Ni-EDTA complex by Fenton reaction and ultrasonic treatment for the removal of Ni 2+ ions, Environ. Chem. Lett. 8 (2010) 317–322.
[38]	X.Da, H.Ji, Z.Zhao, R.Lan, T.Li, J.Ma, Strongly prolonged hydroxyl radical production for Fenton-like reactions: The golden touch of Cu, Sep. Purif. Technol. (2019) 500–506.
[39]	M.I.Litter, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Appl. Catal. B Environ. 23 (1999) 89–114.
[40]	X.Huang, Y.Xu, C.Shan, X.Li, W.Zhang, B.Pan, Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways, Chem. Eng. J. 299 (2016) 23–29.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信