淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2608201512180800
中文論文名稱 干擾效應下高層建築物局部極值風壓特性之探討
英文論文名稱 Interference effects on local peak pressure between two identical high-rise square prisms
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 103
學期 2
出版年 104
研究生中文姓名 蔡牧蓁
研究生英文姓名 Mu-Chen Tsai
學號 602380221
學位類別 碩士
語文別 中文
口試日期 2015-07-13
論文頁數 228頁
口試委員 指導教授-羅元隆
委員-羅元隆
委員-陳振華
委員-陳若華
中文關鍵字 高層建築物  風壓實驗  干擾效應  干擾因子 
英文關鍵字 High-rise building  Wind pressure test  Interference effect  Interference factor 
學科別分類 學科別應用科學土木工程及建築
中文摘要 現今隨著經濟的發展和科技的進步,人口膨脹迅速,有限的土地與空間不斷減少的現況下,建築物只有向上發展,因此現代都市中便林立了越來越多高層建築物。高層建築物的設計發展方向朝向高度高且質量輕,除了地震力要考量之外,建築物受風的敏感程度亦無可避免地增加。因此風力對於結構物的反應成為高層建築物設計中重要的一環。
  在高樓林立的現代都會區中,高層建築物之間存在的相互干擾效應是相當複雜風力載重計算問題。國內外已有若干學者針對流場特性、幾何造型、相對位置、以及來風向之干擾效應造成的整體風力及局部風壓做出定量的描述。然而由於影響因素甚多,且若存在兩棟以上干擾建物時,干擾效應的形成將更為複雜且無法單純以線性疊加方式推測。
本研究進行為使造成干擾效應之來源因素單純化且易於探討,利用壓力量測法之風洞實驗,擬以兩棟相同高寬比為6的方柱建物,在α=0.24的鄉鎮地況下,一者作為可移動的干擾建物,一者作為為固定位置的主要建物。探討在干擾效應下,高層建築物最大風壓係數與最小風壓係數之分布,並以Gumbel和Weibull極值分布理論為基礎,探討極值分布型態受到干擾效應影響下之變化情形,並定義干擾因子對其對建築物外牆披覆物之影響。
本實驗結果得知最大風壓係數會出現在(x/B,y/B) = (3,3)位置,表示干擾建物在主要建物45°之位置可能有較大的影響。最小風壓係數會出現在干擾建物在主要建物上游處y/B = 0,因為干擾建物在後方會產生渦流使主要建物之迎風面能量增加。但本文實驗僅於x/B = -3~3、y/B = 0~3範圍之間,或許極值的發生可能在範圍以外。
英文摘要 In today's developed society, the explosion in population accelerates the growth of high-rise buildings in urban terrains. However, limited by land resource, high-rise buildings tend to be constructed by means of lighter material and higher levels, which inevitably results in a sensitive feature to wind-excited response rather than earthquake. Therefore, to understand the dynamic behavior of a tall building under wind loadings is attracting more and more concerns. Interference effect between any two neighboring buildings is especially focused in an urban area. The complex phenomenon may be triggered by many factors, such as surrounding flow characteristics, geometric appearance of buildings, relative positions of neighboring buildings, wind attack angles, etc. Many publications regarding this phenomenon have been carried out in domestic or overseas journals and reports. Generally speaking from the literature, such complicated phenomenon cannot be simply linearly superposed one by one.
The present study was conducted to idealize the sources of interference effect and easy to investigate. By means of wind pressure measurement, a square prism model with aspect ratio 6 in a suburban turbulent boundary layer flow (α=0.24) was utilized as a principal building. Meanwhile another identical square prism model made by Balsa wood was utilized as interfering building and installed in several interfering positions. Instantaneous pressures over the principal building's surface were recorded by at least 90 runs. Each run represents a 10-minute record in full scale. By normalized to velocity pressure at roof top, pressure coefficients were calculated and the maximum and minimum values were found. Based on extreme value theory, the Gumbel and Weibull distribution types were identified for different pressure tap positions due to different flow conditions. Then the design for cladding was briefly introduced.
Experiment results showed that the maximum wind pressure coefficient was occurred in (x/B,y/B) = (3,3) position, representing that significant interference effects in the oblique configuration. The minimum pressure coefficient was found when the interfering building is in the upstream (y/B = 0). However, in this research, only the range between x/B = -3 ~ 3 and y/B = 0 ~ 3 were examined, the discussion on extreme values may be limited and the greater effect could occur outside the experiment range.
論文目次 中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 研究內容 2
1.4 論文架構 3
第二章 文獻回顧 5
2.1 大氣邊界層流場之風洞模擬 5
2.2 風洞實驗之阻塞效應 5
2.3雷諾數效應 6
2.4 干擾效應之於主要建物的風力影響 6
2.4.1整體風力影響之定性描述 6
2.4.2 局部風力影響之定性描述 8
2.4.3 以干擾因子定義之定量描述 8
2.5 類神經網路應用於干擾因子之預測 9
第三章 理論背景 11
3.1 大氣邊界層特性 11
3.1.1平均風速剖面 11
3.1.2 紊流強度 12
3.1.3 紊流長度尺度 13
3.1.4 擾動風速頻譜 14
3.2 風與結構體之相互關係 15
3.2.1 氣動力現象 15
3.2.2 結構物之整體設計風載重 16
3.2.3結構物局部設計風載重 18
3.3隨機數據理論 18
3.4 常用機率分布及參數特性 21
3.4.1 機率密度分布函數(PDF) 21
3.4.2 極值分布(Extreme value distribution) 22
第四章 實驗設置與數據處理分析 23
4.1 實驗設置 23
4.1.1 風洞本體 23
4.1.2 量測儀器 24
4.1.3 大氣邊界層流場模擬 27
4.1.4 模型製作 28
4.1.5 參考風速量測 31
4.2 訊號處理與數據處理 31
4.2.1 數據採樣 31
4.2.2 風壓訊號之管線修正 32
4.2.3 數據處理分析 34
第五章 實驗結果與討論 37
5.1 風壓係數分布 37
5.1.1 未受干擾之單棟建築物 38
5.1.2 不同干擾位置下之極值影響 40
5.1.3 最大風壓係數 42
5.1.4 最小風壓係數 45
5.2 干擾因子 47
5.2.1 設計風壓係數干擾因子 47
5.3 局部極值分布 53
5.3.1 風壓係數之累積機率密度分布 53
5.3.2 實驗值與Gumbel和Weibull比較 56
第六章 結論與建議 71
6.1 結論 71
6.2 建議 72
參 考 文 獻 73
附錄A 風壓係數分布圖 77
附錄B 累積機率密度分布 153

表3-1 不同地況之指數律參數 12
表3-2 不同地況之地表粗糙長度尺 12
表3-3 地表粗糙長度尺度對應之β 12
表4-1 本研究風洞實驗所假設的各項相似比例尺 32
表5-1 最大風壓係數實驗值與Gumbel誤差比較 57
表5-2 最大風壓係數實驗值與Weibull誤差比較 60
表5-3 最小風壓係數實驗值與Gumbel誤差比較 64
表5-4 最大風壓係數實驗值與Weibull誤差比較 67

圖3-1 紊流長度尺度參數C、W和高度z0關係圖 13
圖3-2 鈍體分離流及渦漩示意圖 16
圖4-1 淡江大學風工程研究中心第一號大氣邊界層風洞實驗室 24
圖4-2 IFA-300智慧型風速儀、探針及校正儀 25
圖4-3 壓力量測系統 26
圖4-4 壓力訊號處理系統(RADBASE3200) 26
圖4-5 64頻道壓力感應器模組 27
圖4-6 逼近流場平均風速、紊流強度及長度尺度剖面 28
圖4-7 風壓模型幾何尺寸、風壓孔分布位置及實驗配置 29
圖4-8 座標版設置平面圖 30
圖4-9 座標設置立體圖 30
圖4-10 風壓管之管線修正使用之頻率域轉換函數(Amplitude ratio) 33
圖4-11 風壓管之管線修正使用之頻率域轉換函數(Phase difference) 34
圖5-1 主要建物受風面示意圖 38
圖5-2 未受干擾之單棟建築物平均風壓係數分布圖 38
圖5-3 未受干擾之單棟建築物擾動風壓係數分布圖 39
圖5-4 未受干擾之單棟建築物最大風壓係數分布圖 39
圖5-5 未受干擾之單棟建築物最小風壓係數分布圖 40
圖5-6 干擾效應整體座標之最大風壓係數分布圖 41
圖5-7 干擾效應整體座標之最大風壓係數 41
圖5-8 干擾效應整體座標之最小風壓係數分布圖 42
圖5-9 干擾效應整體座標之最小風壓係數 42
圖5-10 干擾建物在(x/B,y/B) = (2.5,2.5)之最大風壓係數分布圖 43
圖5-11 干擾建物在(x/B,y/B) = (3,3)之最大風壓係數分布圖 43
圖5-12 干擾建物在(x/B,y/B) = (2.5,0)之最小風壓係數分布圖 45
圖5-13 干擾建物在(x/B,y/B) = (0,1.5)之最小風壓係數分布 46
圖5-14 最大設計風壓係數干擾因子分布圖(IFmax) 48
圖5-15 最大設計風壓係數干擾因子(IFmax) 49
圖5-16 最小設計風壓係數干擾因子分布圖(IFmin) 49
圖5-17 最小設計風壓係數干擾因子(IFmin) 50
圖5-18 最大相對風壓係數干擾因子分布圖(IF*max) 51
圖5-19 最大相對風壓係數干擾因子(IF*max) 52
圖5-20 最小相對風壓係數干擾因子分布圖(IF*min) 52
圖5-21 最小相對風壓係數干擾因子(IF*min) 53
圖5-22 未受干擾之最大風壓係數累積機率密度分布 54
圖5-23 未受干擾之最小風壓係數累積機率密度分布 55
圖A-1 干擾建物在y/B = 0之最大風壓係數分布圖 77
圖A-2 干擾建物在y/B = 0.5之最大風壓係數分布圖 81
圖A-3 干擾建物在y/B = 1之最大風壓係數分布圖 85
圖A-4 干擾建物在y/B = 1.5之最大風壓係數分布圖 89
圖A-5 干擾建物在y/B = 2之最大風壓係數分布圖 95
圖A-6 干擾建物在y/B = 2.5之最大風壓係數分布圖 101
圖A-7 干擾建物在y/B = 3之最大風壓係數分布圖 107
圖A-8 干擾建物在x/B = 0之最大風壓係數分布圖 113
圖A-9 干擾建物在y/B = 0之最小風壓係數分布圖 115
圖A-10 干擾建物在y/B = 0.5之最小風壓係數分布圖 119
圖A-11 干擾建物在y/B = 1之最小風壓係數分布圖 123
圖A-12 干擾建物在y/B = 1.5之最小風壓係數分布圖 127
圖A-13 干擾建物在y/B = 2之最小風壓係數分布圖 133
圖A-14 干擾建物在y/B = 2.5之最小風壓係數分布圖 139
圖A-15 干擾建物在y/B = 3之最小風壓係數分布圖 145
圖A-16 干擾建物在x/B = 0之最小風壓係數分布圖 151
圖B-1 最大風壓係數累積機率密度分布(y/B = 0) 153
圖B-2 最大風壓係數累積機率密度分布(y/B = 0.5) 157
圖B-3 最大風壓係數累積機率密度分布(y/B = 1) 161
圖B-4 最大風壓係數累積機率密度分布(y/B = 1.5) 165
圖B-5 最大風壓係數累積機率密度分布(y/B = 2) 171
圖B-6 最大風壓係數累積機率密度分布(y/B = 2.5) 177
圖B-7 最大風壓係數累積機率密度分布(y/B = 3) 183
圖B-8 最大風壓係數累積機率密度分布(x/B = 0) 189
圖B-9 最小風壓係數累積機率密度分布(y/B = 0) 191
圖B-10 最小風壓係數累積機率密度分布(y/B = 0.5) 195
圖B-11 最小風壓係數累積機率密度分布(y/B = 1) 199
圖B-12 最小風壓係數累積機率密度分布(y/B = 1.5) 203
圖B-13 最小風壓係數累積機率密度分布(y/B = 2) 209
圖B-14 最小風壓係數累積機率密度分布(y/B = 2.5) 215
圖B-15 最小風壓係數累積機率密度分布(y/B = 3) 221
圖B-16 最小風壓係數累積機率密度分布(x/B = 0) 227
參考文獻 [1] Armitt, J. & Counihan, J. (1968) “The Simulation of the Atmospheric Environment ”, Vol.2., pp.49-71.
[2] Counihan, J. (1970) “An Improved Method of Simulation Atmospheric Boundary Layer”, Atmospheric Environment, Vol.4., pp.159-275.
[3] Counihan, J. (1970) “Further Measurements in a Simulated Atmospheric Boundary Layer”, Atmospheric Environment. Vol.4., pp.159-275.
[4] Counihan, J. (1973) “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7., pp.673-689.
[5] Standen, N. M. (1972) “A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels”, Rep. LTR-LA-94, National Aeronautical Establishment, Ottawa, Canada.
[6] Barret, R. V. (1972) “A Versatile Compact Wind Tunnel for Industrial Aerodynamics”, Technical note, Atmospheric Environment, Vol.6., pp.491-495.
[7] Cook, N. J. (1973). “On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7., pp.691-705.
[8] Cermak, J. E., Peterka, J.A. (1974) “ Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.
[9] Jesen, M. (1958) “The Model Law for Phenomena in Natural Wind”, Ingeioen International Edition, Vol.2., No.4., pp.121-123.
[10] Whitbread, R. E. (1963) “Model Simulation of Wind Effects on Structures”, Proceeding of the Conference on Wind Effects on Buildings and Structures, pp.284-306.
[11] Biggs, J. M. (1954) “Wind Load on Truss Bridges”, ASCE, pp.879.
[12] Hunt, A. (1982) “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales”, J. Wind Eng. Ind. Aero., Vol. 10., pp.137-163.
[13] Nakamura, Y., Ohya, Y. (1984) “The effects of turbulence on the mean flow past two dimensional rectangular cylinders”, J. of Fluid. Mech., Vol149., pp.255-273.
[14] Hoerner F. S., Fluid Dynamic Drag. Published by the author, 148 Busted Drive. Midland Park. N. J. (1965)
[15] 鄭啟明、林為哲、蕭葆羲,1987,“圓柱形結構模型橫風向振動之風洞試驗研究”,行政院國家科學委員會研究計劃研究報告。
[16] Tschanz, T. (1983) “The base balance technique for the determination of dynamic wind loads”, J. Wind Eng. Ind. Areo. Vol13., pp.429-439.
[17] Architectural Institute of Japan (AIJ). (2004)
[18] 建築物結構荷重規範(GB 50009). (2012)
[19] 林倚仲,2005,”干擾效應對高層建築設計風力的影響”,淡江大學土木工程研究所碩士論文。
[20] Gu, M. (2004) “Mean interference effects among tall buildings”, Engineering Structures 26 1173-1183.
[21] 盧博堅、鄭啟明、賴建志,1987,”邊界層中三方柱體群縱向與橫向排列所受風力之交互作用”,The Chinese Journal of Mechanics, Vol.11., pp.185-193.
[22] English, E. C. (1990) “Shielding factors from wind-tunnel studies of prismatic structures”, Journal of Wind Engineering and Industrial Aerodynamics, 36, 611-619
[23] Blessmann, J., and Riera, J. D. (1985) “Wind excitation of neighboring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18, 91-103.
[24] Kareem, A. (1987) “The effect of aerodynamic interference on the dynamic response of prismatic structures”, J. Wind Eng. Ind. Aero., Vol.25., pp.365-372.
[25] Sakamoto, H., Haniu, H. (1988) “Effect of free-stream turbulence on Characteristics of fluctuating forces acting on two square prisms in tandem arrangement”, Trans. ASME, Vol. 110, 140-146.
[26] Sakamoto, H., Haniu, H. (1988) “Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, 31, 41-66.
[27] English, E. C. (1985) “Shielding factors from Wind-Tunnel studies of Mid-Rise and High-Rise structures”, Proceedings Fifth U. S. Conference on Wind Engineering.
[28] Khanduri, A. C., Stathopoulos, T., Bedard, C. (1998) “Wind-induced interference effects on buildings—a review of the state-of-the-art”, Eng. Struct., 20(7), 617–630.
[29] Khanduri, A. C., Stathopoulos, T., Bedard, C. (2000) “Generalization of wind-induced interference effects for two buildings”. WindStruct., 3, 255–266.
[30] Kim, W., Tamura, Y., Yoshida, A. (2011) “Interference effects on local peak pressures between two buildings”, J. Wind Eng. Ind.Aerodyn., 99, 584-600.
[31] Y. Hui, Y. Tamura, A. Yoshida, (2012),“Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients”,J. Wind Eng. Ind.Aerodyn., 104-106, 98-108
[32] Hui, Y., Yoshida, A., Tamura, Y. (2013) “Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients”, J. Fluids and Struct., 37, 120-133.
[33] Hui, Y., Tamura, Y., Yoshida, A., Kikuchi, H. (2014) “Pressure and flow field investigation of interference effects on external pressures between high-rise buildings”, J. Wind Eng. Ind.Aerodyn., 115, 150-161.
[34] Mara, T.G, Terry, B. K., Ho, T. C. E., Isyumov, N. (2014) “Aerodynamic and peak response interference factors for an upstream square building of identical height”, J. Wind Eng. Ind. Aerodyn., 133, 200–210.
[35] Xie, Z. N., Gu, M. (2004) “Mean interference effects among tall buildings”, Engineering Structures, 26, 1173-1183.
[36] Xie, Z. N., Gu, M. (2007), “Simplified formulas for evaluation of wind-induced interference effects among three tall buildings”, J. Wind Eng. Ind.Aerodyn., 95, 31-52.
[37] Huang, P., Gu, M. (2005) “Experimental study on wind-induced dynamic interference effects between two tall buildings”, Wind and structures, Vol.8, No.3, pp. 147-161.
[38] 張裴章、張麗秋,2005,“類神經網路”,東華書局。
[39] 周鵬程,2004,“類神經網路入門”,全華科技圖書股份有限公司。
[40] English, E. C., Fricke, F. R. (1999) “The interference index and its prediction using a neural network analysis of wind-tunnel data”, J. Wind Eng. Ind. Aero., 83, 567-575.
[41] Khanduri, A. C., Bédard, C., Stathopoulos, T. (1997) “Modeling wind-induced interference effects using backpropagation neural networks”, J. Wind Eng. Ind. Aero., 72, 71-79.
[42] Zhang, A., Zhang, L. (2004) “RBF neural networks for the prediction of building interference effects”, Computers and Structures 82, pp.2333-2339
[43] Davenport, A. G. (1956) “The Relationship of Wind Structure to Wind Loading”, Proc. Symp. on Wind Effects on Buildings and Structures, Vol.1., National Physical Laboratory, Teddington, U.K. Her Majesty's Stationary Office, London, p53-102.
[44] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[45] Counihan, J., “Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972”, Atmospheric Environment, Vol.9., 1975, pp.871-905.
[46] Emil Simiu, Rebort H. Scanlan, (1986) “Wind Effects on Structures” 2nd edit.﹐John Wiley & Sons.
[47] Davenport, A. G. (1961) “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. Royal Meteorol. Soc., 87, p194-211.
[48] Davenport, A. G. (1968) “The Dependence of Wind Load upon Meteorological Parameters”, in Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press. Toronto, p19-82.
[49] Harris, R. I., Oct. (1968) “On the Spectrum and Auto-correlation Function of Gustiness in High Winds“, Electrical Research Association Rep., No. 5273.
[50] Kaimal, J. C. (1972) “Spectral Characteristics of Surface Layer Turbulence“, J. Royal Meterol Soc., Vol.87, pp.563-589.
[51] Holmes, J. D. (2001) “Wind loading of sturctures”, Spon Press.
[52] Kareem, A. (1981) “Wind excited response of buildings in higher modes”, J. Struct. Div., ASCE, Vol.107., No.ST4, pp.701-706.
[53] Ali, H. M., Senseny, P. E. (2003) “Models for standing seam roods”, J. Wind Eng. Ind. Aerodyn. 91:1689-1702.
[54] “RAD3200 System Instruction and Service Manual”, Scanivalve Crop.
[55] 建築物耐風設計規範及解說。
[56] N. J. Cook, J. R. Mayne, “A refined working approach to the assessment of wind loads for equivalent static design”, J. Wind Eng. Ind. Aerodyn., 1980, 6, 125-137
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信