§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2608201508380600
DOI 10.6846/TKU.2015.00924
論文名稱(中文) 鈷硼觸媒合成條件對硼氫化鈉水解產氫曲線之影響
論文名稱(英文) Effect of Co-B catalysts synthesis conditions on hydrogen generation curves during NaBH4 hydrolysis reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 李冠緯
研究生(英文) Kuan-Wei Lee
學號 602400573
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-20
論文頁數 146頁
口試委員 指導教授 - 陳逸航(yihhang@mail.tku.edu.tw)
委員 - 錢義隆(ilungchien@ntu.edu.tw)
委員 - 林正嵐(cllin@mail.tku.edu.tw)
關鍵字(中) 鈷硼觸媒
硼氫化鈉
硼氫化鉀
動力學參數
水解反應
化學還原法
關鍵字(英) Sodium borohydride
Potassium borohydride
Co-B catalyst
Kinetic parameters
Hydrolysis reaction
Chemical reduction method
第三語言關鍵字
學科別分類
中文摘要
本研究以改變離子交換法及化學還原法之條件製備鈷硼觸媒,探討負載量、表面結構、表面積、金屬比例、分散性以及結晶態與硼氫化鈉水解產氫動力學參數之關係,並將結果應用至硼氫化鈉產氫系統。在離子交換部分,以TP-207樹脂為載體,改變前驅物、pH值、溫度,結果顯示使用CoCl2在pH值3.93還原溫度25℃時,擁有最佳之鈷離子交換量;在觸媒還原階段中,改變還原劑種類、濃度、分散劑濃度、還原溫度、還原劑添加速率。藉由調整個還原變數,能夠改變金屬比例、表面積以及特地之結晶態。當Co/B接近2、表面積提升、能提升40℃及80℃下之活性。從結晶態結果得知,不同之晶型結果會影響水解產氫在40及80℃之活性。由還原階段之合成條件結果顯示: 以0.5 wt.% 之KBH4、10 wt.% 乙二醇、75℃的還原溫度、5 ml/min的還原劑添加速率,可以得到最佳之Co-B觸媒活性。經由L-H動力學模式進行實驗數據回歸,並與觸媒表面結構與組成做比較,選用KBH4還原劑並降低其還原劑濃度、還原溫度、添加速率可以提升觸媒活性。降低還原劑濃度、提升還原溫度、降低還原劑添加速率則能改善釋氫之拖尾現象。
英文摘要
In this work, the ion exchange and chemical reduction method were used to synthesize Co-B catalyst. Catalyst loading, surface structure, surface area, metal composition, and crystal structure of Co-B catalyst were investigated in order to understand the connection between surface morphology/composition and the kinetic parameters of NaBH4 hydrolysis reaction. In the ion exchange step, the maximum Co ion exchange amount over TP-207 resin was operated at the synthesis condition: CoCl2 precursor, 3.93 pH, 25 oC ion exchange temperature. In the reduction step, types and concentrations of reduction agents, the concentration of dispersion agent, the reduction temperatures, and injection rates were investigated. The metal composition, surface area, and crystal structure were adjusted by the synthesis variable. The 40 and 80oC activities of Co-B catalyst were improved by adjusting the ratio of Co and B to 2, increasing surface area, and synthesing the certain Co-B crystal type. The results show that the 40 and 80 oC activity of Co-B catalyst was improved while different crystal structure was formation. The optimal result shows the best Co-B catalyst activity was located on following synthesis condition: 0.5 wt.% KBH4, 10 wt.% Ethylene glycol, 75 oC reduction temperature and 5 ml/min injection rate. After regressing kinetic parameters by using L-H model, the catalyst activity can be improved by decreasing KBH4 concentration, reduction temperature and injection rate; the tail of hydrogen generation curve can be improved by decreasing KBH4 concentration and injection rate.
第三語言摘要
論文目次
目錄
目錄	III
圖目錄	VIII
表目錄	XIV
第一章、緒論	1
1.1背景	1
1.2文獻回顧	5
1.2.1硼氫化鈉應用	5
1.2.2硼氫化鈉觸媒反應	6
1.2.3 硼氫化鈉水解觸媒之速率表現	11
1.2.4 觸媒製備方法	12
1.2.4.1離子交換	12
1.2.4.2鈷硼觸媒還原	13
1.3 研究動機	14
1.4 論文組織	15
第二章、實驗藥品與裝置介紹	16
2.1 實驗材料	16
2.1.1 觸媒合成及硼氫化鈉水溶液產氫實驗藥品	16
2.1.2 觸媒合成及硼氫化鈉產氫實驗設備	18
2.2 實驗裝置	18
2.2.1硼氫化鈉水溶液產氫實驗裝置	19
2.3觸媒分析鑑定	21
2.4實驗步驟	23
2.4.1 鈷硼觸媒製備步驟	23
2.4.1.1離子交換	24
2.4.1.2鈷硼觸媒還原	25
2.4.2硼氫化鈉水解產氫實驗步驟	26
2.5實驗數據測量	27
2.6觸媒負載量量測	30
2.7實驗數據處理	30
第三章、鈷硼觸媒製備及其製備條件分析	31
3.1 離子交換法製備鈷錋觸媒之介紹	31
3.1.1 離子交換變數	31
3.1.2 鈷硼觸媒還原	34
3.2鈷錋觸媒製備變數分析	35
3.2.1離子交換	35
3.2.1.1離子交換與前驅物關係	36
3.2.1.2離子交換與pH值關係	37
3.2.1.3離子交換與溫度關係	40
3.2.2鈷硼觸媒還原	42
3.2.2.1還原劑種類與最佳濃度	47
3.2.2.1.1還原劑種類與產氫活性	47
3.2.2.1.2還原劑種類與觸媒結構/組成分析	48
3.2.2.1.3還原劑濃度與產氫活性	50
3.2.2.1.4還原劑濃度與表面結構/組成分析	51
3.2.2.2分散劑添加及濃度改變	56
3.2.2.2.1分散劑添加及濃度改變與產氫活性	56
3.2.2.2.2分散劑添加及濃度改變對觸媒負載量與pH值影響	59
3.2.2.2.3分散劑添加及濃度改變與結構/組成分析	60
3.2.2.3還原溫度	65
3.2.2.3.1還原溫度與產氫活性	65
3.2.2.3.2還原溫度與結構/組成分析	68
3.2.2.4還原劑添加速率	73
3.2.2.4.1還原劑添加速率與產氫活性	74
3.2.2.4.2還原劑添加速率與結構分析	77
3.2.2.5  NaBH4與KBH4兩還原劑所製備之觸媒活性與結構比較	81
3.4總結	82
第四章、觸媒動力學參數迴歸	84
4.1 系統描述	84
4.2 觸媒動力式	85
4.3 反應速率常數及吸附常數迴歸	87
4.4觸媒動力學參數迴歸	90
4.4.1 頻率因子與活化能迴歸	90
4.4.2 L-H動力式之吸附常數	92
4.4.3 迴歸結果	94
4.4.3.1 還原劑種類	94
4.4.3.2 KBH4還原劑濃度	95
4.4.3.3 分散劑濃度	95
4.4.3.4 還原溫度	96
4.4.3.7還原劑添加速率	97
第五章、鈷硼觸媒綜合性分析	120
5.1 動力學參數與觸媒結構	120
5.1.1 還原劑最適化條件對觸媒活性綜合分析	122
5.1.2分散劑對觸媒活性綜合分析	126
5.1.3 還原溫度對觸媒活性綜合分析	129
5.1.4添加速率對觸媒綜合影響	132
5.1.5 總結	135
5.2 觸媒耐久性測試	137
第六章、結論	138
參考文獻	141
 
圖目錄
圖1-1、燃料電池運作方式	2
圖1-2、硼氫酸根與酸催化反應機制圖	7
圖1-3、硼氫酸根與金屬觸媒催化反應機制圖	8
圖1-4、非貴金屬與貴金屬活性比較圖	9
圖1-5、硼氫化納水解觸媒速率圖	11
圖2-1、硼氫化鈉水解產氫實驗與量測裝置圖	19
圖2-2、硼氫化鈉水解產氫實驗與量測裝置圖	20
圖2-3、觸媒製備示意圖	24
圖2-4、溫度紀錄程式圖示	27
圖2-5、溫度紀錄程式操作介面	28
圖2-6、電子天秤紀錄程式圖示	28
圖2-7、電子天秤紀錄程式操作介面	29
圖2-8、平滑化處理前後比較圖	30
圖3-1 IR-120與TP-207樹脂載體之耐久性測試後SEM圖 30000x(a)IR-120 (b)TP-207	33
圖3-2、Co-B觸媒使用不同前驅物pH值與負載量關係圖	36
圖3-3、pH值與離子交換量	38
圖3-4、Co-B觸媒使用不同NaOH wt.%之與負載量	38
圖3-5、Co-B觸媒使用不同NaOH wt.%之前後pH值	39
圖3-6、改變離子交換溫度之負載量關係圖	40
圖3-7、Co-B觸媒SEM圖 200000X 還原劑種類為	48
(a)NaBH4, (b)KBH4	48
圖3-8、改變還原劑濃度與最佳條件在40℃下產氫測試	50
圖3-9、改變還原劑濃度與最佳條件在80℃下產氫測試	51
圖3-10、Co-B觸媒SEM圖 200000x 還原劑KBH4濃度為 0.5 wt.%	52
圖3-11、X光光電子能譜圖(a) Co能譜圖、(b)B能譜圖	54
圖3-12、X光繞射分析圖 (K-01)	55
圖3-13、添加乙二醇對BH4-分散性之示意圖	56
圖3-14、KBH4改變還原劑濃度在40℃產氫測試圖	57
圖3-15、KBH4改變還原劑濃度在80℃產氫測試圖	58
圖3-16、NaBH4改變還原劑濃度在40℃產氫測試圖	58
圖3-17、NaBH4改變還原劑濃度在40℃產氫測試圖	59
圖3-18、觸媒負載量與pH值隨乙二醇濃度變化圖(a)KBH4 0.5 wt.%, (b)NaBH4 10wt.%	60
圖3-19、Co-B觸媒使用NaBH4及KBH4還原劑添加乙二醇之SEM圖	62
(a)KBH4 EG 0wt.% x10000, (b)KBH4 10 wt.% EG x10000, (c)KBH4 0wt.% EG x200000, (d)KBH4 10 wt.% EG x200000, (e)NaBH4 0 wt.% EG x10000, (f)NaBH4 10 wt.% EG x10000, (g)NaBH4 0 wt.% EG x200000, (h)NaBH4 10 wt.% EG x200000	62
圖3-20、K-07之EDS元素比例分析圖	63 64
圖3-21、X光繞射分析圖 (K-07)	65
圖3-22、KBH4改變還原溫度在40℃產氫測試	66
圖3-23、KBH4改變還原溫度在80℃產氫測試	67
圖3-24、NaBH4改變還原溫度在40℃產氫測試	67
圖3-25、NaBH4改變還原溫度在80℃產氫測試	67
圖3-26、Co-B觸媒使用NaBH4及KBH4還原劑改變還原溫度之SEM圖200000x (a)KBH4 0℃ , (b)KBH4 75℃, (c)NaBH4 25℃, (d)NaBH4 75℃	69
圖3-27、X光繞射分析圖 (K-09)	72
圖3-28、X光繞射分析圖 (K-11)	72
圖3-29、KBH4改變添加速率在40℃產氫測試	75
圖3-30、KBH4改變添加速率在80℃產氫測試	75
圖3-31、NaBH4改變添加速率在40℃產氫測試	76
圖3-32、NaBH4改變添加速率在80℃產氫測試	76
圖3-33、Co-B觸媒使用NaBH4及KBH4還原劑改變添加速率之SEM 圖x100000 (a)KBH4 50 ml(once), (b) KBH4 5 ml/min, (c)NaBH4 50ml(once), (d)NaBH4 5ml/min	78
圖3-34、X光繞射分析圖 (K-13)	80
圖4-1、K-01觸媒反應溫度40、60、80℃氫氣累積圖	85
圖4-2、K-01觸媒反應溫度40、60、80℃L-H動力參數迴歸	89
圖4-3、反應速率常數中頻率因子及活化能之線性迴歸圖	91
圖4-4、吸附常數中焓變化(ΔH0)及熵變化(ΔS0)之線性迴歸圖	93
圖4-5、改變還原劑種類之產氫實驗氫氣累積圖操作溫度(a)40℃(b)60℃(c)80℃	98
圖4-6、改變還原劑種類之動力學參數迴歸圖操作溫度(a)40℃(b)60℃(c)80℃	99
圖4-7、改變還原劑種類之速率常數迴歸(a)K-01 (b)Chen and Pan. (2014)	100
圖4-8、改變還原劑種類之吸附常數迴歸(a)K-01 (b)Chen and Pan. (2014)	101
圖4-9、改變KBH4還原劑濃度之產氫實驗氫氣累積圖操作溫度(a)40℃(b)60℃(c)80℃	102
圖4-10、改變還原劑濃度之動力學參數迴歸圖操作溫度(a)40℃(b)60℃(c)80℃	103
圖4-11、改變還原劑濃度之速率常數迴歸(a)K-01(b)K-02(c)K-03(d)K-04(e)K-05	104
圖4-12、改變還原劑濃度之吸附常數迴歸(a)K-01(b)K-02(c)K-03(d)K-04(e)K-05	105
圖4-13、不同還原劑改變分散劑濃度之產氫實驗氫氣累積圖操作溫度(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80℃	106
圖4-14、不同還原劑改變分散劑濃度之動力學參數迴歸圖操作溫度(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80℃	107
圖4-15、不同還原劑改變分散劑濃度之速率常數迴歸	108
(a)K-01(b)K-06(c)K-07(d)K-08(e)Chen and Pan.(2014)(f)N-02(g)N-03 (h)N-04	108
圖4-16、不同還原劑改變分散劑濃度之吸附常數迴歸	109
(a)K-01(b)K-06(c)K-07(d)K-08(e)Chen and Pan.(2014)(f)N-02(g)N-03 (h)N-04	109
圖4-17、不同還原劑改變還原溫度之產氫實驗氫氣累積圖操作溫度(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80℃	110
圖4-18、不同還原劑改變還原溫度之動力學參數迴歸圖操作溫度(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80℃	111
圖4-19、不同還原劑改變還原溫度之速率常數迴歸	112
(a)K-09(b)K-07(c)K-10(d)K-11(e)N-05(f)N-03(g)N-06(h)N-07	112
圖4-20、不同還原劑改變還原溫度之吸附常數迴歸	113
(a)K-09(b)K-07(c)K-10(d)K-11(e)N-05(f)N-03(g)N-06(h)N-07	113
圖4-21、不同還原劑改變添加速率之產氫實驗氫氣累積圖操作溫度	114
(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80	114
圖4-22、不同還原劑改變添加速率之動力學參數迴歸圖操作溫度(a)KBH4 40℃(b) KBH4 60℃(c) KBH4 80℃ (d)NaBH4 40℃ (e) NaBH4 60℃ (f) NaBH4 80℃	115
圖4-23、不同還原劑改變添加速率之速率常數迴歸	116
(a)K-11(b)K-12(c)K-13(d)N-03(e)N-08(f)N-09	116
圖4-24、不同還原劑改變添加速率之吸附常數迴歸	117
(a)K-11(b)K-12(c)K-13(d)N-03(e)N-08(f)N-09	117
圖5-1、觸媒微結構到巨觀產氫結果示意圖	121
圖5-2、還原劑最適化條件速率圖操作溫度(a)40℃(b)60℃	124
圖5-3、分散劑濃度之速率圖操作溫度(a)40℃(b)60℃	127
圖5-4、還原溫度之速率圖操作溫度(a)40℃(b)60℃	130
圖5-5、添加速率之速率圖操作溫度(a)40℃(b)60℃	133
 
表目錄
表1-1、各類燃料電池分類及應用	3
表1-2、單位體積下所能達到儲存之能量密度	4
表1-3、儲氫物儲氫量比較表	5
表1-4、貴金屬觸媒文獻研究資料彙	9
表1-5、非貴金屬載體觸媒文獻研究資料彙整	10
表2-1、實驗設備與儀器	18
表3-1、離子交換樹脂物性比較表	33
表3-2、還原變數分析	44
表3-3、觸媒各條件比較總表-1	45
表3-4、觸媒各條件比較總表-2	46
表3-5、還原劑NaBH4及KBH4之表面積分析及脫附直徑	49
表3-6、最佳還原劑條件之NaBH4及KBH4之BET分析	52
表3-7、ICP-MS檢測之Co與B含量	53
表3-8、K-01之X光光電子能譜檢測之Co與Co-B比例分析	54
表3-9、K-01之X光光電子能譜檢測之B與Co-B比例分析	55
表3-10、EDS元素比例分析	63
表3-11、KBH4最佳分散劑條件之表面積分析及脫附直徑	61
表3-12、改變分散劑濃度ICP-MS檢測之Co與B含量	64
表3-13、觸媒合成之還原溫度對觸媒表面積及脫附直徑分析表	69
表3-14、改變還原溫度0℃及75℃ICP-MS檢測之Co與B含量	70
表3-15、不同還原溫度其結晶型及種類與產氫活性比較	73
表3-16、改變添加速率50 ml(once)及5 ml/min表面積及脫附直徑分析	79
表3-17、改變添加速率50 ml(once)及5 ml/min ICP-MS檢測之Co與B含量	79
表4-1、K-01觸媒操作溫度對反應速率常數及吸附常數迴歸表	89
表4-2、使用KBH4充當還原劑各條件動力學參數	118
表4-3、使用NaBH4充當還原劑各條件動力學參數	119
表5-1、各效應對於產氫實驗以及動力學上影響	122
表5-2、還原劑最適化條件動力學參數表	125
表5-3、分散劑條件動力學參數表	128
表5-4、還原溫度條件動力學參數表	131
表5-5、添加速率條件動力學參數表	134
表5-6、觸媒設計方向	136
參考文獻
[1]	Wang, A., Chen, K. S., Mishler, J., Cho, S. C., Adroher, X. C. “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research”, Applied Energy, 88, 981-1007, 2011.
[2]	黃鎮江 (民93)。燃料電池。臺北市:全華科技圖書公司。
[3]	曲新生、陳發林、呂錫民 (民96)。產氫與儲氫技術。臺北市:五南圖書出版公司。
[4]	Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.. “Metal hydride materials for solid hydrogen storage: A review ”, International Journal of Hydrogen Energy, 32, 1121-1140, 2007. 
[5]	Li, Z. P., Liu, B. H., Arai, K., Morigazaki, N., Suda, S.. “Protide compounds in hydrogen storage systems”, Journal of Alloys and Compounds, 356 469-474, 2003.
[6]	Wu, Z., Ge, S. “Facile synthesis of a Co–B nanoparticle catalyst for efficient hydrogen generation via borohydride hydrolysis”, Catalysis Communications, 13, 40-43, 2011.
[7]	Schlesinger, H. I., Brown, H. C., Finholt, A. B., Gilbreath, J. R., Hockstra, H. R., Hyde, E. K.. “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen”, Journal of the American Chemical Society, 75, 215-219, 1953.
[8]	Li, Z. P., Liu, B. H.. “A review: Hydrogen generation from borohydride hydrolysis reaction”, Journal of Power Sources, 187, 527-534, 2009.
[9]	Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H.. “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide”, International Journal of Hydrogen Energy, 27, 1029-1034, 2002.
[10]	Muir, S. S., Yao, X.. “Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems”, International Journal of Hydrogen Energy, 36, 5983-5997, 2011. 
[11]	Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J., Binder, M.. “An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst”, Journal of Power Sources, 85, 186-189, 2000. 
[12]	Wu, C., Zhang, H., Yi, B.. “Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells”, Catalysis Today, 93 477-483, 2004.  
[13]	Bai, Y., Wu, C., Wu, F., Yi, B.. “Carbon-supported platinum catalysts for on-site hydrogen generation from NaBH4 solution”, Materials Letters, 60, 2236-2239, 2006.  
[14]	Ozkar, S., Zahmakiran, M.. “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst”, Journal of Alloys and Compounds, 404 728-731, 2005.
[15]	Huesh, C., L., Chen, C., Y., Ku, J., R., Tsai, S., F., Hsu, Y., Y., Tsai, S., F., Hsu, Y., Y., Tsau, F., Jeng, M., S.. “Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution”, Journal of Power Sources, 177, 485-492, 2008.
[16]	Larichev, Y., V., Netskina, O., V., Komova, O.,V., Simagina., V., I.. “Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts or NaBH4 hydrolysis”, International Jounal of Hydrogen Energy, 35, 6501-6507, 2010.
[17]	Alonso, R., P., Sicurelli., A., Callone., E., Carturan, G., Raj, R.. “A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells”, Jounal of Power Sources, 165, 315-323, 2007.
[18]	Dai, H. B., Liang, Y., Wang, P., Yao, X. D., Rufford, T., Lu, M., Cheng, H. M.. “High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution”, International Journal of Hydrogen Energy, 33, 4405-4412, 2008. 
[19]	Wu, C., Wu, F., Bai, Y., Yi, B., Zhang, H.. “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution”, Materials Letters, 59, 1748-1751, 2005.
[20]	Fernades, R., Pater, N., Miotello, A., Flippi., M.. “Studies on catalytic behavior of Co–Ni–B in hydrogen production by hydrolysis of NaBH4”, Journal of Molecular Catalysis A: Chemical, 298, 1-6, 2009.
[21]	Lee, J., Kong, K. Y., Jung, C. R., Cho, E., Yoon, S. P., Han, J., Lee. T. G., Nam, S. W.. “A structured Co–B catalyst for hydrogen extraction from NaBH4 solution”, Catalysis Today, 120, 305-310, 2007.
[22]	Patel, N., Fernandes, R., Miotello, A.. “Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution”, Journal of Catalysis, 271, 315-324, 2010.  
[23]	Jeong, S., U., Kim, R., K., Cho, E., A., Kim, H., J., Nam, S.,W., Oh, L., H., Hong, S., A., Kim, S., H.. “A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst”, Journal of Power Sources 144, 129-134, 2055.
[24]	Ding, X., L., Yuan, X., Jia C., Ma, Z., F.. “Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt-Copper-Boride (Co-Cu-B) catalysts”, International Jounal of Hydrogen Energy, 35, 1107-11084, 2010.
[25]	Patel, N., Fernandes., R., Miotelllo, A.. “Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: A kinetic study”,Jounal of Power Sources, 188, 411-420, 2009.
[26]	Chen, Y., H., Pan, C., Y.. “Effect of various Co-B catalyst synthesis conditions on catalyst surface morphology and NaBH4 hydrolysis reaction kinetic parameters”, International Jounal of Hydrogen Energy, 39, 1648-1663, 2014.
[27]	Ozdemir, E.. “Enhanced catalytic activity of Co-B/glassy carbon and Co-B/graphite catalysts for hydrolysis of sodium borohydride”, International Jounal of Hydrogen Energy,  1-7,  2015.
[28]	Shang, L., Zhao, F., Zeng, B.. “Electrodeposition of Pt-P Nanoparticles for the Electrocatalytic Oxidation of Ethanol”, International Jounak of Electrochemical science, 10, 786-794, 2015.
[29]	Coskuner, B., Figen, A. K., Piskin, S.. “Sonochemical Approach to Synthesis of Co-B Catalysts and Hydrolysis of Alkaline NaBH4 Solutions”, Jounal of Chemistry, 9, 2014.
[30]	Patel, N., Fernandes, R., Santini, A., Miotello, A.. “Co-B nanoparticles supported on carbon film synthesized by pulsed laser deposition for hydrolysis of ammonia borane”, International Jounal of Hydrogen Energy, 37, 2007-2013, 2012.
[31]	Luqman, I., M., Luqman, M.. “Chapter 1- Introduction to Ion Exchange Processes”, Ion Exchange Technology I, Springer Dordrecht Heidelberg New York London, 1-19, 2012.
[32]	Zagorodni, A. A.. “Chapter 2 - ion exchangers, their structure and major properties”, Ion exchange materials. Oxford: Elsevier, 9-54, 2007. 
[33]	Seven, F., Sahiner, N.. “Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts”, Journal of Power Sources, 272, 128-136, 2014.
[34]	Lee, J. K., Ann, H., Yi, Y., Lee, K, W., Uhm, S., Lee, J.. “A stable Ni–B catalyst in hydrogen generation via NaBH4 hydrolysis”, Catalysis Communications, 16, 120-123, 2011.
[35]	Liu, C., Chen, B., Hsueh, C., Ku, J., Tsau, F., Hwang, K.. “Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution”, Applied Catalysis B: Environmental, 91, 368-379, 2009. 
[36]	Glavee, G. N., Klabunde, K. J., Sorensen, C. M., Hadjapanayis, G. C.. “Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates”, Langmuir, 8, 771-773, 1992.
[37]	Glavee, G. N., Klabunde, K. J., Sorensen, C. M., Hadjipanayis, G. C.. “Borohydride reduction of cobalt ions in water. chemistry leading to nanoscale metal, boride, or borate particles”, Langmuir, 9, 162-169, 1993.
[38]	Alrehaily, L. M., Joseph, J. M., Biesinger, M. C., Guzonas, D., A., Wren, J., C.. “Gamma-radiolysis-assisted cobalt oxide nanoparticle formation”. Phys Chem. Chem Phys, 15, 1014, 2013. 
[39]	Zhu, J., Li, R., Niu, W., Wu, Y., Gou, X.. “Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride”, Journal of Power Sources, 211, 33-39, 2012.
[40]	Lu, J., Dreisinger, D. B., Cooper, W. C.. “Cobalt precipitation by reduction with sodium borohydride”, Hydrometallurgy, 45, 305-322, 1997. 
[41]	Desilva, F., Koebel, B.. “Water temperature affect both resin and system functions”, Water Quality Products Magazine, 2000.
[42]	Wu, C., Bai, Y., Wu, F., Y, B., l., Zhang, H., M.. “Highly active cobalt-based catalysts in situ prepared from CoX2 (X = Cl-, NO3-) and used for promoting hydrogen generation from NaBH4 solution”, International Jounal of Hydrogen Energy,35, 2675-2679, 2010.
[43]	Hubicki, Z., Kolodynska, D.. “Chapter 8 - Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods”, Ion Exchange Technologies, Intech, 207-208, 2012.
[44]	Shankar, S., Rhim, J., W.. “Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles”, Materials Letters, 132, 307-311, 2014.
[45]	Schaal, M., T., Rebelli, J., McKerrow, H., M., Williams, C., T., Monnier, J., R.. “Effect of liquid phase reducing agents on the dispersion of supported Pt catalysts”, Applied Catalysis A: General, 382, 49-57, 2010.
[46]	Damjanovic, L., Bennici, S., Aurox, A.. “A direct measurement of the heat evolved during the sodium and potassium borohydride catalytic hydrolysis”,  Journal of Power Sources, 195, 3284-3292, 2010.
[47]	Manna, J., Roy, B., Vashistha, M., Sharma, P., “Effect of Co2+/BH4- ratio in the synthesis of Co-B catalysts on sodium borohydride hydrolysis”, International Jounal of Hydrogen Energy, 39, 406-413, 2014.
[48]	Lu, J.. “Cobalt precipitation by reduction with sodium borohydride”, Department of Metals and Materials Engineering, University of British Columbia, 1995.
[49]	Li, X. A., Han, X. J., Xu, P.. “Microstructure evolution and magnetic properties of Co–B coatings electrolessly plated on hollow microspheres”, Applied Surface Science, 255, 6215-6131, 2009.
[50]	Therno Fisher Scientific Inc. (2013). http://xpssimplified.com/elements/cobalt.php
[51]	Jeong, S. U., Cho, E. A., Nam, S. W., Oh, L. H., Jung, U. H., Kim, S. H.. “Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution”, International Jounal of Hydrogen Energy, 32, 1749-1754, 2007.
[52]	Coskuner, B., Piskin, M. B., Figen, A. K.. “Investigation of Co-B Catalyst Characteristics by boron sources effect”, Digital Proceeding of The ICOEST’2013, 2013.
[53]	Zhu, D. M., Kisi, F.. “Synthesis and Characterization of Boron/Boron Oxide Nanorods”, Journal of the Australian Ceramic Society Volume, 45, 49-53, 2009.
[54]	Hung, A. J., Tsai, S. F., Hsu, Y. Y., Ku, J. R., Chen, Y. H., Yu, C. C.. “Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation” , International Journal of Hydrogen, 33, 6205-6215, 2008.
[55]	Zhang, J. S., Delgass, W. N., Fisher, T. S., Gore, J. P.. “Kinetics of Ru-catalyzed sodium borohydride hydrolysis”, Journal of Power Sources, 164, 772-781, 2007.
[56]	Andrieux, J., Demirci, U. B., Miele, P.. “Langmuir–Hinshelwood kinetic model to capture the cobalt nanoparticles-catalyzed hydrolysis of sodium borohydride over a wide temperature range”, Catalysis Today, 170 13-19, 2011.
[57]	Schauermann, S., NiLius, N., Shaikhutdinov, S., Freund, H. J.. “Nanoparticles for Heterogeneous Catalysis: New Mechanistic Insights Mechanistic Insights”, Accounts of Chemical research, August 6, 2012.
[58]	Fogler, H. S (2005). Element of Chemical Reaction Engineering. Prebtice Hall.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信