淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2608201401020800
中文論文名稱 ADH3p的表現在酵母菌BY4742和ΔADH3 (BY4741)中對粒線體型態的影響
英文論文名稱 The effect of overexpressing ADH3p in Saccharomyces cerevisiae BY4742 & ΔADH3 strain(BY4741)on mitochondrial morphology.
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 102
學期 2
出版年 103
研究生中文姓名 林建利
研究生英文姓名 Chien-Li Lin
學號 601180119
學位類別 碩士
語文別 中文
口試日期 2014-07-23
論文頁數 51頁
口試委員 指導教授-陳銘凱
委員-林賜恩
委員-官宜靜
中文關鍵字 酒精去氫酶  啤酒酵母菌  粒線體 
英文關鍵字 ADH3p  Saccharomyces cerevisiae  mitochondrial 
學科別分類 學科別自然科學化學
中文摘要 在實驗室先前的研究發現在BJ2168菌株中過度表現ADH3p會使得粒線體型態產生分裂的狀況,但是BJ2168為蛋白酶缺陷菌株,為了驗證在一般菌株亦有一樣效果,本實驗使用BY4742和ΔADH3(BY4741)菌株過度表現ADH3p來驗證此結果,最後發現在BY4742菌株中亦有同樣結果,但是在ΔADH3菌株中,可能因為ADH3p表現量不足,導致粒線體型態呈現融合的狀態。
英文摘要 In previous studies, we found that overexpression ADH3p in BJ2168 will let mitochondria fission. BJ2168 is protease-deficient stain. In order to verify the result in BY4742 and ΔADH3(BY4741) strain, we did the same experiments to verify the results. Finally, in BY4742 strain, it had the same result. But in ADH3Δstrain, it looked different. It might be due to insufficient amount ADH3p.
論文目次 目錄
謝誌I
中文摘要 II
英文摘要 III
圖目錄 VI
表目錄 VII
ADH3p的表現在酵母菌BY4742和ΔADH3(BY4741)中對粒線體型態的影響 1
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 3
第二章 材料與方法 4
2.1 實驗材料 4
2.1.1 菌株 4
2.1.2 實驗藥品器材 4
2.1.3 實驗儀器 5
2.2 實驗方法 5
2.2.1 E. coli 質體抽取 6
2.2.2 S. cerevisiae 勝任細胞製備 6
2.2.3 S. cerevisiae transformation(heat shock method) 7
2.2.4 菌種保存 8
2.2.5 粒線體型態觀察 9
2.2.6 SDS-PAGE分析 10
第三章 實驗結果 11
3.1 粒線體型態觀察 11
3.2 SDS-PAGE分析 13
第四章 討論 16
附錄 17
一、 酵母菌隨機突變 17
二、 常用藥品組成 44
LB(Solid) 44
LB(Liquid) 44
Phosphate-buffered saline(PBS) 44
SC-dropout(Liquid) 45
dropout(Solid) 45
SDS running buffer 45
Separating gel(SDS-page下層膠) 46
Stacking gel(SDS-page上層膠) 46
YPD medium 46
YPD plate 47
三、 載體 47
1. pGEMR-T Easy Vector(Promega)[41] 47
參考資料 48

圖目錄
第一部分ADH3p的表現在酵母菌BY4742和ΔADH3(BY4741)中對粒線體型態的影響
圖1 粒線體氧化磷酸化示意圖 1
圖2 實驗流程 6
圖3 過度誘導ADH3p一天於BY4742的粒線體型態分裂比例 11
圖4 過度誘導ADH3p一天於BY4742的粒線體型態 12
圖5 過度誘導ADH3p三天於ΔADH3(BY4741)的粒線體型態分裂比例 12
圖6 過度誘導ADH3p 三天於ΔADH3(BY4741)的粒線體型態 13
圖7過度誘導ADH3p的SDS-page(菌株:BY4742、誘導時間:1天、電泳條件:120V 2.5小時、ADH3-GFP 分子量: 67.27 kDa) 14
圖8過度誘導ADH3p的SDS-page(菌株:ΔADH3(BY4741)、誘導時間:3天、電泳條件:200V 1小時、ADH3-GFP 分子量: 67.27 kDa) 15

表目錄
ADH3p的表現在酵母菌BY4742和ΔADH3(BY4741)中對粒線體型態的影響
表1 TE/LiOAc/DTT buffer配方 7
表2 PTLAD配方 8

參考文獻 參考資料
1. Bereiter-Hahn, J. and M. VOTH, Metabolie Control of Shape and Strueture of Mitoehondria in situ. Biol Cell, 1983. 47: p. 309-22.
2. Green, D.R., Apoptotic Pathways: The Roads to Ruin. Cell, 1998. 94(6): p. 695-98.
3. Haslbrunner, E., H. Tuppy, and G. Schatz, Deoxyribonucleic acid associated with yeast mitochondria. Biochemical and Biophysical Research Communications, 1964. 15(2): p. 127-32.
4. Man, P.Y.W., D.M. Turnbull, and P.F. Chinnery, Leber hereditary optic neuropathy. J Med Genet, 2002. 39: p. 162-8.
5. Gomes, A.P., et al., Declining NAD(+) Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013. 155(7): p. 1624-38.
6. Nobelprize.org. The Nobel Prize in Physiology or Medicine 2009. Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/.
7. Madiraju, A.K., et al., Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014. 510(7506): p. 542-6.
8. Otsuga, D., et al., The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol, 1998. 143(2): p. 333-49.
9. Bleazard, W., et al., The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol, 1999. 1(5): p. 298-304.
10. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84.
11. Frank, S., et al., The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell, 2001. 1(4): p. 515-25.
12. Karbowski, M., et al., Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol, 2002. 159(6): p. 931-8.
13. Olichon, A., et al., Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem, 2003. 278(10): p. 7743-6.
14. Gottlieb, E., OPA1 and PARL keep a lid on apoptosis. Cell, 2006. 126(1): p. 27-9.
15. Wu, S., et al., Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J, 2011. 278(6): p. 941-54.
16. Cooper, K.F., et al., Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast. Dev Cell, 2014. 28(2): p. 161-73.
17. Breckenridge, D.G., et al., Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol, 2003. 160(7): p. 1115-27.
18. Bakker, B.M., et al., The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol, 2000. 182(17): p. 4730-7.
19. Bakker, B.M., et al., Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 2001. 25(1): p. 15-37.
20. 陳宏仁 淡江大學化學研究所碩士論文. 2010.
21. 呂毓鴻 淡江大學化學研究所碩士論文. 2013.
22. 高翊傑 淡江大學化學研究所碩士論文. 2013.
23. Ozcan, U., Mitofusins: Mighty Regulators of Metabolism. Cell, 2013. 155(1): p. 17-8.
24. 邱明諄, 啤酒酵母菌醇類去氫酶3 與4之選殖、過度表現、純化及動力學分析. 2005.
25. 古佳弘, 過度表現ADH3p對啤酒酵母粒線體形態上的影響. 2010.
26. Qian, S.B., et al., mTORC1 links protein quality and quantity control by sensing chaperone availability. J Biol Chem, 2010. 285(35): p. 27385-95.
27. Wei, Y. and X.F. Zheng, Nutritional control of cell growth via TOR signaling in budding yeast. Methods Mol Biol, 2011. 759: p. 307-19.
28. Sopko, R., et al., Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell, 2006. 21(3): p. 319-30.
29. McGovern, P.E., et al., Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences, 2004. 101(51): p. 17593-17598.
30. Hodgson, P.E., Nuclear Power and the Energy Crisis. Modern Age, 2008. 50(3): p. 238-246.
31. Ikehata, H. and T. Ono, The mechanisms of UV mutagenesis. J Radiat Res, 2011. 52(2): p. 115-25.
32. Alper, H., et al., Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production. Science, 2006. 314: p. 1565-1568.
33. Lin, Y., et al., Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 2012. 47: p. 395-401.
34. Novo, M., et al., Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT - Food Science and Technology, September 2014. 58(1): p. 166-72.
35. Essen, L.O., Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling? Curr Opin Struct Biol, 2006. 16(1): p. 51-9.
36. Essen, L.O. and T. Klar, Light-driven DNA repair by photolyases. Cell Mol Life Sci, 2006. 63(11): p. 1266-77.
37. Faraji, S. and A. Dreuw, Physicochemical mechanism of light-driven DNA repair by (6-4) photolyases. Annu Rev Phys Chem, 2014. 65: p. 275-92.
38. Castellari, M.V., A.; Spinabelli, U.; Galassi, S.; Amati, A., An improved HPLC method for the analysis of organic acids, carbohydrates, and alcohols in grape musts and wines. Journal of Liquid Chromatography & Related Technologies, 2000. 23(13): p. 2047-56.
39. Gerchman, Y., et al., A simple rapid gas-chromatography flame-ionization-detector (GC-FID) method for the determination ofethanol from fermentation processes. African Journal of Biotechnology, 2012. 11(15): p. 3612-16.
40. Williams, M.B. and H.D. Reese, Colorimetric Determination of Ethyl Alcohol. Analytical Chemistry, 1950. 22(12): p. 1556-61.
41. pGEMR-T and pGEMR-T Easy Vector Systems. Promega.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信