§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2608201310353000
DOI 10.6846/TKU.2013.01106
論文名稱(中文) 封閉迴路式震盪熱管之單向穩態循環流研究
論文名稱(英文) Study on Single Direction Circulation Flow in Closed-Loop Pulsating Heat Pipe
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 蕭百鈞
研究生(英文) Pai-Chun Hsiao
學號 601370108
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-11
論文頁數 67頁
口試委員 指導教授 - 康尚文
委員 - 林玉興
委員 - 呂宗行
關鍵字(中) 震盪式熱管
循環流
循環方向
關鍵字(英) lsating Heat Pipe
Circulation Flow
Circulation Direction
第三語言關鍵字
學科別分類
中文摘要
本研究是利用外徑6mm、內徑3 mm 之玻璃管製作的9 個折彎
數、總長1980mm 之震盪式熱管。為了使震盪式熱管達到循環狀態,
本實驗在蒸發端採用單邊加熱及雙邊加熱的方式進行實驗,並使用水
冷系統為冷凝器將溫度控制在25°C。在兩種不同的加熱方式下、及
不同輸入功率(20W、60W、100W、140W)下,計算出熱阻值進行比
較。並利用數位攝影機拍攝影片,觀測乙醇在震盪式熱管中流動的情
形。
觀察實驗結果可以發現,當加熱瓦數到達100W 時,震盪式熱管
開始出現循環流,雙邊加熱在循環流中會出現局部的逆流,甚至是發
生震盪進而停止循環的情況,而單邊加熱可以在較低的輸入功率下產
生穩定的單方向循環流,使得熱阻值降低。
英文摘要
This research utilized 6 mm outer diameter and 3 mm inner diameter glass tubes to
manufacture 9 turns Closed-Loop Pulsating Heat Pipe (CLPHP) with a total length of
1980mm. For achieving the loop circulation, heaters were installed unilaterally and bilaterally
in the evaporator respectively, and a water cooling system kept at 25°C was used as the
condenser. The experiment was conducted under both heating methods to compare the
thermal resistance at an input power of 20W, 60W, 100W and 140W. Through a digital video
camera, the visualization experiment was carried out to observe the ethanol fluid flow in the
PHP.
From the observation, when the input power is greater than 100W, circulation in the
working fluid occurs. Randomness direction of circulation and local oscillation can be found
in the bilateral heating. Unilateral heating may allow the consistent direction circulation
happened at lower input power to perform lower thermal resistance.
第三語言摘要
論文目次
誌謝 .............................................................................................. I
中文摘要 ............................................................................................. II
英文摘要 ............................................................................................ III
目錄 ............................................................................................IV
圖目錄 ............................................................................................. V
表目錄 .......................................................................................... VII
符號說明 ......................................................................................... VIII
第一章 緒論 ........................................................................................... 1
1-1 研究動機 ......................................................................... 1
1-2 文獻回顧 ......................................................................... 2
1-3 研究目的 ....................................................................... 18
第二章 理論基礎 ................................................................................. 20
2-1 震盪式熱管的介紹 ........................................................ 20
2-2 震盪式熱管理論簡介 .................................................... 30
2-3 PHP 熱傳機制 ............................................................... 35
2-4 熱通量與PHP 運作的關係 ........................................... 36
第三章 震盪式熱管之製作 .................................................................. 38
3-1 PHP 設計 ....................................................................... 39
3-2 蒸發端設計.................................................................... 39
3-3 冷凝端設計.................................................................... 40
第四章 實驗架設及步驟 ...................................................................... 42
4-1 真空處理 ....................................................................... 42
4-2 實驗設備架設 ................................................................ 44
4-3 實驗參數 ....................................................................... 50
4-4 實驗步驟 ....................................................................... 50
第五章 實驗分析與結果討論 .............................................................. 52
5-1 震盪式熱管性能表現 .................................................... 52
5-2 震盪式熱管循環觀察 .................................................... 57
第六章 總結與未來建議 ...................................................................... 63
6-1 總結 ............................................................................... 63
6-2 未來建議 ....................................................................... 64
參考文獻 ............................................................................................ 65

圖目錄
圖1-1震盪式熱管示意圖 ......................................................................... 2
圖1-2迴路式熱管示意圖[1] .................................................................... 3
圖1-3多迴圈震盪式熱管示意圖[2] ........................................................ 3
圖1-4 KENZAN FIN 震盪式熱管概念開發產品[2] .............................. 4
圖1-5 Closed Loop PHP流場可視化示意圖[4] ...................................... 5
圖1-6震盪式熱管模組化示意圖[4] ........................................................ 6
圖1-7可視化PHP示意圖[5] ................................................................... 7
圖1-8 震盪式熱管穩態循環流[6] ........................................................... 8
圖1-9 震盪式熱管填充率和最大加熱量之關係[7] ............................... 9
圖1-10 工作流體和內徑的影響[8] ....................................................... 10
圖1-11 Closed Loop PHP實驗模組示意圖[9] ...................................... 11
圖1-12 震盪式熱管設計之邊界關係[9] ............................................... 11
圖1-13 單迴路震盪式熱管[11] ............................................................. 13
圖1-14 PHP尺寸及可視化PHP之實驗架設[12] ................................ 14
圖1-15不同方向之彎管處汽泡破裂情形[12] ...................................... 14
圖1-16管壁粗糙度與汽泡結構圖[13] .................................................. 15
圖1-17 單迴路震盪式熱管與熱阻結構示意圖[15] ............................. 16
圖1-18 震盪式熱管示意圖[16] ............................................................. 17
圖1-19壓力與流體方向關係圖[16] ...................................................... 17
圖1-20 震盪式熱管實體圖[17] ............................................................. 18
圖2-1 PHP作動示意圖 ........................................................................... 21
圖2-2 三種PHP迴路的形式 ................................................................. 22
圖2-3 不同工作流體生成汽泡上升參數實驗結果[2] ......................... 24
圖2-4 PHP管內徑壓力分布圖[10] ........................................................ 26
圖2-5垂直上升管中的流場型態[20] .................................................... 28
圖2-6垂直下降管中汽液二相流流場型態[20] .................................... 29
圖2-7汽液柱通過U型管與倒U型管時的流場型態[20] .................. 30
圖2-8毛細塊狀流壓降分佈[21] ............................................................ 31
圖2-9蒸發端及冷凝端之汽泡分佈型態[22] ........................................ 32
圖2-10絕熱段汽泡分佈型態[22] .......................................................... 34
圖2-11動態接觸角影響毛細阻抗示意圖[18] ...................................... 35
圖2-12 單迴圈閉路型PHP熱力循環示意圖[23] ................................ 36
圖2-13輸入熱通量與PHP 熱阻關係圖[9] .......................................... 37
圖2-14輸入熱通量與PHP 運作關係圖[23] ........................................ 37
圖3-1單邊加熱的震盪式熱管 ............................................................... 39
圖3-2 雙邊加熱的震盪式熱管 .............................................................. 40
圖3-3水冷套示意圖 ............................................................................... 41
圖4-1水的三相圖 ................................................................................... 42
圖4-2 真空幫浦GLD-201B ................................................................... 45
圖4-3 真空計 .......................................................................................... 46
圖4-4 電源供應器GPR-3010HD .......................................................... 46
圖4-5訊號擷取器Imc Spartan-L ........................................................... 47
圖4-6 DV攝影機 .................................................................................... 47
圖4-7恆溫水槽 ....................................................................................... 48
圖4-8 流量計 .......................................................................................... 48
圖4-9 熱電偶線配置位置 ...................................................................... 49
圖5-1 總體溫度分佈趨勢 ...................................................................... 52
圖5-2 冷凝端溫度分佈趨勢 .................................................................. 53
圖5-3低瓦數溫度分佈趨勢 ................................................................... 54
圖5-4 20W下的工作流體 ...................................................................... 54
圖5-5 60W下的工作流體 ...................................................................... 55
圖5-6 高瓦數溫度分佈趨勢 .................................................................. 56
圖5-7 不同加熱方式之熱阻值比較 ...................................................... 57
圖5-8 蒸發端產生小汽泡 ...................................................................... 58
圖5-9 單邊加熱T1及T10的溫度比較圖 ........................................... 59
圖5-10 100W循環流 .............................................................................. 59
圖5-11 140W循環流 .............................................................................. 60
圖5-12 100W時非循環流 ...................................................................... 60
圖 5-13 雙邊加熱T1及T10的溫度比較圖 ........................................ 61
圖5-14 140W下T1及T10的溫度趨勢圖 ........................................... 62
圖5-15 汽液柱分佈不均 ........................................................................ 62

表目錄
表2-1 不同工作流體理想範圍 .............................................................. 24
表4-1 實驗參數 ...................................................................................... 50
表5-1 不同瓦特數下的熱阻值 (K/W) ................................................. 57
參考文獻
[1] H. Akachi, US Patent, Patent Number, 5490558, 1993.
[2] H. Akachi, F. Polasek and P. Stulc, “Pulsating Heat Pipes,” Proc.
5th International Heat Pipe Symposium, Melbourne, Australia, pp.
208-217,1996.
[3] K. Gi, F. Sato and S. Maezawa, “Flow Visualization Experimental
on Oscillating Heat Pipe,” Proc. 11th International Heat Pipe
Conference, Tokyo, Japan, pp. 373-377, 1999.
[4] T. N. Wong, B. Y. Tong, S. M. Lim and K. T. Ooi, “Theoretical
Modeling of Pulsating Heat Pipe,” Proc. 11th International Heat
Pipe Conference, Tokyo, Japan, pp. 159-163,1999.
[5] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic and M. Groll,
“Thermofluid dynamic study of flat-plate closed-loop pulsating
heat pipes,” Microscale Thermophysical Engineering, Vol. 6, pp.
303-317, 2002.
[6] B.Y. Tong, T.N. Wong and K.T. Ooi, “Closed-loop pulsating heat
pipe,” Applied Thermal Engineering, Vol. 21, pp. 1845-1862, 2001.
[7] S. Khandekar, X. Cui and M. Groll, “Thermal Performance
Modeling of Pulsating Heat Pipes by Artificial Neural Network,”
Proc. 12th International Heat Pipe Conference, Moscow, Russia, pp.
215-219, 2002.
[8] P. Charoensawan, S. Khandekar, M. Groll and P. Terdtoon, “Closed
loop pulsating heat pipes Part A: parametric experimental
investigations,” Applied Thermal Engineering, Vol.23, pp.
2009-2020, 2003.
[9] S. Khandekar, N. Dollinger and M. Groll, “Understanding
Operational Regimes of Closed Loop Pulsating Heat Pipes: An
Experimental Study,” Applied Thermal Engineering, Elsevier
Science, Vol. 23, pp. 707-719, 2003.
[10] S. Khandekar and M. Groll, “On The Definition of Pulsating Heat
66
Pipes: An Overview,” Proc. 5th Minsk International Seminar (Heat
Pipe, Heat Pumps and Refrigerators), Minsk, Belarus, 2003.
[11] Sameer Khandekar, Manfred Groll, “An insight into
thermo-hydrodynamic coupling in closed loop pulsating heat
pipes,” International Journal of Thermal Sciences, 2004
[12] J. L. Xu, Y. X. Li, and T. N. Wong, “High speed flow visualization
of a closed pulsating heat pipe,” Heat and Mass Transfer, Vol. 48,
pp. 3338-3351, 2005.
[13] W. Qu and H. B. Ma, “Theoretical analysis of startup of a pulsating
heat pipe,” International Journal of Heat and Mass Transfer, Vol. 50,
pp. 2309-2316, 2007.
[14] L. Su and H. Zhang, “Steady state circulation flow analysis of loop
pulsating heat pipe,” Journal of Chemical Industry and Engineering
(China), Vol.58, No.8, 2007.
[15] S. Khandekar and M. Groll, “Roadmap to Realistic Modeling of
Closed Loop Pulsating Heat Pipes,” Proc. 9th International Heat
Pipe Symposium, Kuala Lumpur, Malaysia, pp. 26-38, 2008.
[16] S. Khandekar and M. Groll, “Roadmap to Realistic Modeling of
Closed Loop Pulsating Heat Pipes,” Proc. 9th International Heat
Pipe Symposium, Kuala Lumpur, Malaysia, pp. 26-38, 2008.
[17] S. W. Kang, P. C. Hsiao, C. H. Chan, Y. H. Lin, “Study on
Circulation Flow in Closed Loop Pulsating Heat Pipe,” Proc. 9th
International Heat Pipe Symposium, Beijing, China, pp. 131-137,
2013.
[18] M. Schneider, S. Khandekar, P. Schafer, R. Kulenovic, and M.
Groll ,“Visualisation of Thermofluidynamic Phenomena in Flat
Plate Closed Loop Pulsating Heat Pipes,” Proceedings of the 6th
International Heat Pipe Symposium, Chiang Mai, Thailand, pp. 5-9,
November, 2000.
[19] R. T. Dobson, “An Open Oscillatory Heat Pipe Water Pump,”
Applied Thermal Engineering, Vol. 23, pp. 603-621, 2005.
67
[20] 林宗虎等編著,” 汽液兩相流和沸騰傳熱 ”,西安交通大學出
版社,pp 14-35,2003。
[21] Wallis, G., “One Dimensional Two Phase Flow,” McGraw Hill,
1969.
[22] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic, and M.
Groll, “Thermofluid Dynamic Study of Flat Plate Closed Loop
Pulsating Heat Pipes,” Microscale Thermophysical Engineering,
Vol. 6, Issue 4, pp. 303-318, 2002.
[23] S. Khandekar, M. Groll, “Pulsating heat pipes: Study on a
Two-Phase Loop,” 13th International Conference on Thermal
Enerieering and Thermogrammetry, Budapest, Hungary, pp.18-20
June, 2003.
[24] 林玉興,「震盪式熱管之製造與分析」,博士論文,淡江大學機
械與機電工程研究所,民國九十七年。
[25] 陳慧倫,「銀奈米流體應用於震盪式熱管效能之研究」,碩士論
文,淡江大學機械與機電工程研究所,民國九十五年。
[26] 吳宗祐,「聚二甲基矽氧烷之震盪式熱管研製」,碩士論文,淡
江大學機械與機電工程研究所,民國九十六年。
[27] 陳冠廷,「應用類神經網路預測震盪式熱管之熱性能」,碩士論
文,淡江大學機械與機電工程研究所,民國九十八年。
[28] 詹前軒,「封閉迴路式震盪熱管之穩態循環流研究」,碩士論文,
淡江大學機械與機電工程研究所,民國九十九年。
[29] 洪啟翔,「閉迴路震盪式熱管流向模式之實驗探討」,碩士論文,
淡江大學機械與機電工程研究所,民國一百年。
[30] 林建成,「田口法應用於震盪式熱管之性能最適化探討」,碩士
論文,淡江大學機械與機電工程研究所,民國一百零一年。
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信