淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2608201015581200
中文論文名稱 封閉迴路式震盪熱管之循環流研究
英文論文名稱 Study on Circulation Flow in Closed Loop Pulsating Heat Pipe
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 詹前軒
研究生英文姓名 Chien-Hsuan Chan
學號 697370814
學位類別 碩士
語文別 中文
口試日期 2010-07-13
論文頁數 100頁
口試委員 指導教授-康尚文
委員-楊龍杰
委員-陳增源
委員-楊錫杭
委員-林玉興
中文關鍵字 震盪式熱管  循環流  循環週期 
英文關鍵字 Pulsating Heat Pipe  Circulation Flow  Circulation Period 
學科別分類 學科別應用科學機械工程
中文摘要 本研究是利用外徑6mm、內徑3 mm之玻璃管製作9個折彎數總長1980mm之震盪式熱管,為了使震盪式熱管更容易達到循環狀態,故製作水冷系統為冷凝器並控制溫度在35°C,在不同工作流體填充率(20%、30%、40%、50%、60%、70%及80%)、及不同輸入功率(40W、80W、120W、160W、200W)下評估整體熱阻值。
利用數位攝影機拍攝影片,分析記錄震盪式熱管內流體循環之週期,為了方便觀察流體的動向,本實驗加入保麗龍球來確認流體流動之方向。在不同填充率下觀測流體作動情況並計算循環週期與次數,此外針對傾斜角度對於震盪式熱管性能之影響加以探討及分析。
結果顯示熱管在填充率60%、70%、80%,輸入功率200W時將呈現循環狀態。循環狀態可分為順轉、逆轉及過渡狀態,且以填充率80%之週期最短,而在每次循環中逆轉的次數會多於順轉的次數。震盪式熱管於傾斜角45°時性能最佳且循環週期較短,推測主要乃受到重力影響所致。
英文摘要 This research utilized 6 mm outer diameter and 3 mm inner diameter glass tubes to manufacture 9 turns closed loop Pulsating Heat Pipe(PHP) with a total length of 1980mm. For achieving the loop circulation easily, a water cooling system kept at 35 ° C was used as the condenser. The experiment was conducted to evaluate the thermal resistance under different fluid filling ratios (20%, 30%, 40%, 50%, 60%, 70% and 80%), and at a series change of heat inputs (40W, 80W, 120W, 160W, 200W).

Through a digital video camera, the visualization experiment was carried out to observe the circulation flow period in the PHP. A styrofoam ball was designed to put into the tube for a better observation and a correct estimation of fluid flow direction. Circulation times and circulation period were observed and calculated from different filling ratio tests. We also analyze the effect of inclination angles to the performance and circulation period in the PHP.

The results showed that PHP reached fully circulation under the filling ratio of 60%, 70%, and 80%, at an input power of 200W. The circulation can be categorized into clockwise circulation, counter-clockwise circulation and transition circulation status. The shorter circulation period happened as filling ratio was 80%. We also found that there were more counter-clockwise circulation occurred in each experiment. Due to gravity effects, better performance and shorter period took place when the inclination angle was 45 °.
Key words: pulsating heat pipes, PHP, circulation flow, circulation period
論文目次 目錄
誌謝.................................................................................................................................I
中文摘要 II
英文摘要 III
目錄..............................................................................................................................IV
圖目錄..........................................................................................................................VI
表目錄.......................................................................................................................VIII
符號說明 IX
第一章 緒論 1
1-1研究動機 1
1-2 文獻回顧 3
1-3 研究目的 16
第二章 理論基礎 17
2-1 震盪式熱管的介紹 17
2-1-2 震盪式熱管基本型態 19
2-1-3 震盪式熱管設計參數 20
2-1-4 管內的二相流型態 25
2-2震盪式熱管理論簡介 30
2-2-1毛細塊狀流特性 30
2-2-2毛細塊狀流的汽泡形態 31
2-2-3 毛細阻抗效應 34
2-2-4 PHP熱傳機制 35
2-2-5熱通量與PHP運作的關係 36
第三章 震盪式熱管之製作 38
3-1 PHP設計 39
3-2蒸發端設計 40
3-3冷凝端設計 41
3-3真空封裝及測試 42
3-4 角度框架製作 43
3-5檔板的製作 44
第四章實驗架設及步驟 46
4-1真空處理 46
4-1-1真空測漏 46
4-1-2充填流程 47
4-2實驗設備架設 48
4-2-1實驗周邊設備 48
4-2-2熱電偶線位置 53
4-2-3 熱電偶溫度校正 53
4-2-4 流量設定 54
4-3 性能測試 55
4-3-1 實驗參數 55
4-3-2 實驗步驟 56
第五章 實驗分析與結果討論 59
5-1 震盪式熱管性能表現 59
5-1-1 震盪式熱管溫度趨勢分析 59
5-1-2 整體熱阻表現 66
5-2震盪式熱管循環觀察 68
5-3 震盪式熱管在不同傾斜角度之性能比較 77
5-4 填充率70%在傾斜角90°、60°與45°之週期比較 78
第六章 總結與未來建議 79
6-1總結 79
6-2未來建議 81
參考文獻 82
附錄A 85
附錄A-1不準度分析 100


圖目錄
圖1-1 震盪式熱管示意圖 2
圖1-2 迴路式熱管示意圖 3
圖1-3 KENZAN FIN 震盪式熱管概念開發產品 4
圖1-4 多迴圈震盪式熱管示意圖 5
圖1-5 震盪式熱管模組化示意圖 6
圖1-6 可視化PHP示意圖 7
圖1-7 Closed Loop PHP流場可視化示意圖 8
圖1-8 震盪式熱管填充率和最大加熱量之關係 9
圖1-9 Closed Loop PHP實驗模組示意圖 9
圖1-10 震盪式熱管設計之邊界關係 10
圖1-11 工作流體和內徑的影響 11
圖1-12 PHP尺寸及可視化PHP之實驗架設 13
圖1-13 管壁粗糙度與汽泡結構圖 13
圖1-14 單迴路震盪式熱管與熱阻結構示意圖 15
圖1-15 新型式的震盪式熱管散熱模組 16
圖2-1 PHP作動示意圖 19
圖2-2 三種PHP迴路的形式 19
圖2-3 流道中不同工作流體生成汽泡上升參數實驗結果 21
圖2-4 震盪式熱管管徑2mm與1mm最大熱傳量的比較 22
圖2-5 PHP管內徑壓力分布圖 25
圖2-6 垂直上生管中的流場型態 27
圖2-7 垂直管中汽液二相流流場型態 28
圖2-8 汽水混合物通過U型管與倒U型管時的流場型態 29
圖2-9 毛細塊狀流壓降分佈 31
圖2-10 蒸發端及冷凝端之汽泡分佈型態 32
圖2-11 絕熱段汽泡分布型態 33
圖2-12 動態接觸角影響毛細阻抗與示意圖 35
圖2-13 單迴圈閉路型PHP熱力循環示意圖 36
圖2-14 輸入熱通量與PHP 熱阻關係圖 37
圖2-15 輸入熱通量與PHP 運作關係圖 37
圖3-1 震盪式熱管詳細尺寸 39
圖3-2 震盪式熱管實體圖 40
圖3-3 冷凝端水冷示意圖 41
圖3-4 角度框架尺寸示意圖 43
圖3-5 角度框架實體圖 44
圖3-6 檔板尺寸示意圖 45
圖3-7 檔板實體圖 45
圖4-1 水的三相圖 46
圖4-2 真空幫浦GLD-201B 50
圖4-3 真空計 50
圖4-4 電源供應器LW-3650及LW-3650_R1 51
圖4-5 溫度擷取器 TempScan-1100 51
圖4-6 DV攝影機 52
圖4-7 恆溫水槽 52
圖4-8 熱電偶線配置位置 53
圖4-9 流量計 54
圖5-1 填充率20%溫度分佈趨勢 62
圖5-2 填充率30%溫度分佈趨勢 63
圖5-3 填充率40%溫度分佈趨勢 63
圖5-4 填充率50%溫度分佈趨勢 64
圖5-5 填充率60%溫度分佈趨勢 64
圖5-6 填充率70%溫度分佈趨勢 65
圖5-7 填充率80%溫度分佈趨勢 65
圖5-8 震盪式熱管在不同填充率下熱阻分佈 67
圖5-9 填充率80%順轉作動情形(І) 69
圖5-9 填充率80%順轉作動情形(ІІ) 70
圖5-9 填充率80%順轉作動情形(ІІІ) 71
圖5-10 填充率80%過渡區作動情形 72
圖5-11 填充率80%逆轉區作動情形(І) 73
圖5-11 填充率80%逆轉區作動情形(ІІ) 74
圖5-11 填充率80%逆轉區作動情形(ІІІ) 75
圖5-12 填充率60%、70%、80%循環週期分佈 76
圖5-13 震盪式熱管在不同角度下熱阻分佈 78
圖5-14 震盪式熱管在70%之傾斜角90°、60°與45°週期分佈 79
圖A-1 震盪式熱管傾斜角75°之溫度趨勢圖 85
圖A-2 震盪式熱管傾斜角60°之溫度趨勢圖 85
圖A-3 震盪式熱管傾斜角45°之溫度趨勢圖 86
圖A-4 震盪式熱管傾斜角30°之溫度趨勢圖 86
圖A-5 震盪式熱管傾斜角15°之溫度趨勢圖 87
圖A-6 震盪式熱管傾斜角0°之溫度趨勢圖 87


表目錄
表2-1 不同工作流體理想範圍 22
表4-1 填充率實驗參數 55
表4-2 角度實驗參數 56
表5-1 熱阻、輸入功率與不同填充率下之關係值 67
表5-2 填充率60%、70%、80%順轉逆轉次數及週期比較 76
表5-3 熱阻、輸入功率與傾斜角度間之關係值 77
表5-3 傾斜角90°、60°與45°順轉逆轉次數及週期之比較 78
表A-1 填充率80%循環時間 88
表A-2 填充率70%循環時間 95
表A-3 填充率60%循環時間 97
表A-4 傾斜角45°循環時間 98

參考文獻 [1] H. Akachi, US Patent, Patent Number, 5490558 (1993).
[2] H. Akachi, F. Polasek and P. Stulc, “Pulsating Heat Pipes,” Proc. 5th International Heat Pipe Symposium, Melbourne, Australia, pp. 208-217 (1996).
[3] K. Gi, K. Y. Maezawa and N. Yamazaki, “CPU Cooling of Notebook PC by Oscillating heat pipe,” Proc. 11th International Heat Pipe Conference, Tokyo, Japen, pp. 166-169 (1999).
[4] K. Gi, F. Sato and S. Maezawa, “Flow Visualization Experimental on Oscillating Heat Pipe,” Proc. 11th International Heat Pipe Conference, Tokyo, Japan, pp. 373-377 (1999).
[5] S. Nagata, R. Shirakashi and S. Nishio, “Closed-Loop Heat-Transport Tube,” Nippon Dennetsu Shinpojiumu Koen Ronbunshu, Vol. 37, pp. 27-28 (1999).
[6] S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll, “Visualization of Thermo fluid dynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe,” Proc. 6th Int Heat Pipe Symposium, Chiang Mai, Thailand, pp. 235-247 (2000).
[7] T. N. Wong, B. Y. Tong, S. M. Lim and K. T. Ooi, “Theoretical Modeling of Pulsating Heat Pipe,” Proc. 11th International Heat Pipe Conference, Tokyo, Japan, pp. 159-163 (1999).
[8] B. Shafii, A. Faghri and Y. Zhang, ”Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes,” Journal of Heat Transfer, Vol. 123, pp. 1159-1172 (2001).
[9] S. Khandekar, X. Cui and M. Groll, “Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network,” Proc. 12th International Heat Pipe Conference, Moscow, Russia, pp. 215-219 (2002).
[10] S. Khandekar, N. Dollinger and M. Groll, “Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol.23, pp. 707-719 (2003).
[11] S. Khandekar and M. Groll, “On The Definition of Pulsating Heat Pipes: An Overview,” Proc. 5th Minsk International Seminar (Heat Pipe, Heat Pumps and Refrigerators), Minsk, Belarus (2003).
[12] P. Charoensawan, S. Khandekar, M. Groll and P. Terdtoon, “Closed loop pulsating heat pipes Part A: parametric experimental investigations,” Applied Thermal Engineering, Vol.23, pp. 2009-2020 (2003).
[13] X. M. Zhang, J. L. Xu, and Z. Q. Zhou, “Experimental study of a pulsating heat pipe using FC-72, ethanol, and water as working fluids,” Experimental Heat Transfer, Vol.17, pp 47-67 (2004).
[14] J. L. Xu, Y. X. Li, and T. N. Wong, “High speed flow visualization of a closed pulsating heat pipe,” Heat and Mass Transfer, Vol.48, pp.3338-3351 (2005).
[15] W. Qu and H. B. Ma, “Theoretical analysis of startup of a pulsating heat pipe,” International Journal of Heat and Mass Transfer, Vol.50, pp. 2309-2316 (2007).
[16] H. Yang, S. Khandekar and M. Groll, “Operational limit of closed loop pulsating heat pipes,” Applied Thermal Engineering, Vol.28, pp. 49-59 (2007).
[17] L. Su and H. Zhang, “Steady state circulation flow analysis of loop pulsating heat pipe,” Journal of Chemical Industry and Engineering (China), Vol.58, No.8 (2007).
[18] S. Khandekar and M. Groll, “Roadmap to Realistic Modeling of Closed Loop Pulsating Heat Pipes,” Proc. 9th International Heat Pipe Symposium, Kuala Lumpur, Malaysia, pp. 26-38 (2008).
[19] Y. F. Maydanik, V. I. Dmitrin and V. G . Pastukhov, “Compact cooler for electronics on the basis of a pulsating heat pipe,” Applied Thermal Engineering, Vol.29, pp.3511-3517 (2009).
[20] R. T. Dobson, “An Open Oscillatory Heat Pipe Water Pump,” Applied Thermal Engineering, Vol.23, pp. 603-621 (2005).
[21] S Khabdekar, M. Groll, P. Charoensawan, S. Rittidech, and P. Terdtoon, “Closed and Open Loop Pulsating Heat Pipes,”
[22] 林玉興,「震盪式熱管之製造與分析」,博士論文,淡江大學機械與機電工程研究所,民國九十七年。
[23] 陳慧倫,「銀奈米流體應用於震盪式熱管效能之研究」,碩士論文,淡江大學機械與機電工程研究所,民國九十五年。
[24] 吳宗祐,「聚二甲基矽氧烷之震盪式熱管研製」,碩士論文,淡江大學機械與機電工程研究所,民國九十六年。
[25] 陳冠廷,「應用類神經網路預測震盪式熱管之熱性能」,碩士論文,淡江大學機械與機電工程研究所,民國九十八年。
[26] 林宗虎等編著,” 汽液兩相流和沸騰傳熱 ”,西安交通大學出版社,pp 14-35,2003。
[27] Wallis, G., “One Dimensional Two Phase Flow,” McGraw Hill,1969.
[28] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic, and M. Groll, “Thermofluid Dynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes,” Microscale Thermophysical Engineering, Vol. 6 ,Issue 4, pp.303-318, 2002.
[29] M. Schneider, S. Khandekar, P. Schäfer, R. Kulenovic, and M. Groll ,“Visualisation of Thermofluidynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipes,” Proceedings of the 6th International Heat Pipe Symposium, Chiang Mai, Thailand, pp. 5-9, November, 2000.
[30] S. Khandekar, M. Groll, “Pulsating heat pipes: Study on a Two-Phase Loop,” 13th International Conference on Thermal Enerieering and Thermogrammetry, Budapest, Hungary, pp.18-20 June, 2003.
[31] S. Khandekar, N. Dollinger and M. Groll, “Understanding Operational Regimes of Pulsating Heat Pipes: An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol. 23/6, pp. 707-719, 2003.
[32] J. P. Holman, Experimental Methods for Engineers, McGraw-Hill (1989).
[33] H. Akachi, F. Polasek, and P. Stulc, “Pulsating Heat Pipes,” Proceedings of the 5th International Heat Pipe Symposium, Melbourne Australia,pp.208-217(ISBN 0-08-042842-8) , 1996
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信