§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2608200814385200
DOI 10.6846/TKU.2008.00958
論文名稱(中文) 低溫及低驅動電壓之微型熱挫曲式微幫浦分析與研製
論文名稱(英文) Analysis and Fabrication of a Novel Valveless Micropump with Low- Temperature Thermo-Buckled Actuator
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 周禹廷
研究生(英文) Yu-Ting Chou
學號 695372333
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-06-18
論文頁數 95頁
口試委員 指導教授 - 楊龍杰
委員 - 張培仁
委員 - 黃榮堂
委員 - 李其源
委員 - 施文彬
關鍵字(中) 聚-對二甲苯
熱致動器
熱挫曲
微幫浦
無閥微幫浦
關鍵字(英) parylene
thermal-buckled
valve-less pump
actuator
Coventor Ware
第三語言關鍵字
學科別分類
中文摘要
本研究係使用模擬軟體CoventorWare,分析一parylene為主體材料的三明治結構,對其進行熱電耦合的分析。
本文以改良由本研究群所研製之上電極式微幫浦於製作上諸多缺點,以在單一平面上加工之下電極式微幫浦,取代需要攀爬多層材料之上電極式微幫浦,以矽質材料作為底材,於晶圓背面施以濕蝕刻後,掏空濕蝕刻所形成之V型槽 (V-groove),以利電極做動裕度,並在晶圓正面上正光阻作為犧牲層(sacrificial layer)製作出一立體結構,利用parylene薄膜為結構層,來包覆住光阻犧牲層,在溶除光阻犧牲層後, 即完成一下電極式微幫浦。
在輸入方波電壓並通以DI water 加以驅動後,成功地在製作之PDMS流道中量測到液體流量,而作動溫度不但未超過50℃,及最大流量更可達23.8 nl /min,期待能以此低溫運作之特性,使應用面更為廣闊。
英文摘要
This study is using  coventorware to simulate a sandwich structure whtich mold by parylene. We also use this software to design and thermoelectric coupling.
This paper present the fabrication and analysis for a novel valveless micropump with working in a low temperature environment.We chose the parylene-c for the main material and success of production at an appropriate temperature which can drive a thermal actuating device. We Use TMAH to etch silicon wafer for the suspension pumping film, it may make a  Application at a novel micropump. Under the scale of micrometers, not only can actuate under 40℃ but also provide the velocity about 23.8 nl /min. In the future, it also can transport pharmaceuticals by the microchannel system with  micropumps.
第三語言摘要
論文目次
目錄
中文摘要  I
英文摘要  II
目錄............................................................................................................III
圖錄..........................................................................................................VII
表目錄.....................................................................................................XII
第一章	 緒論............................................................................................1
1-1 研究動機.............................................................................3
1-2 文獻回顧.............................................................................4
1-2-1 parylene 微機電製程技術的回顧............................ 4
1-2-2 微幫浦技術回顧........................................................5
1-2-3 熱挫曲致動器之回顧................................................6
1-3 研究目的...........................................................................10
1-4 論文架構...........................................................................12
第二章 設計原理....................................................................................14
2-1聚-對二甲苯介紹...............................................................14
2-2 微流道之設計...................................................................16
2-3 無閥構型的設計...............................................................16
2-4 微幫浦驅動原理與分析...................................................18
   2-4-1薄膜變形分析……………………..……………..…18
第三章 Coventor ware軟體模擬分析與討論........................................20
3-1 Coventor ware簡介...........................................................20
3-2 準備程序...........................................................................21
3-3 結果與討論.......................................................................29
第四章 新型低溫熱挫曲微致動元件之下電極式微幫浦....................31
4-1上電極式微幫浦之探討與概述........................................31
4-1-1金屬鍍層之階梯覆蓋率問題..................................31
4-1-2 流道結構坍塌與損壞之問題.................................32
4-1-3 光阻擋牆結構產生破裂或缺陷.............................33
4-2 下電極式微型幫浦缺點改正...........................................35
4-3 製程設計...........................................................................37
   4-3-1 製造程序..................................................................38
4-4 後續工作...........................................................................43
   4-4-1 流道翻膜製程..........................................................44
第五章 製程結果與討論………………………………………………45
5-1 熱挫曲式微型幫浦製程結果...........................................45
   5-1-1 氧化層開洞.............................................................45
   5-1-2 晶圓背面蝕刻.........................................................47
   5-1-3 沉積底層聚對二甲苯薄膜.....................................50
   5-1-4 定義金屬舉離層.....................................................52
   5-1-5 沉積電極上層之聚對二甲苯薄膜.........................55
   5-1-6 定義流道犧牲層.....................................................55
   5-1-7 頂部沉積聚對二甲苯薄膜.....................................55
   5-1-8 淘空背面殘餘矽材與氧化層.................................56
   5-1-9 以SU-8翻製PDMS流道......................................60
第六章 量測與分析...............................................................................63
6-1 實驗架設說明..................................................................65
6-2 驅動量測………………………………………………..66
   6-2-1 乾式量測.................................................................66
   6-2-2 紅外線熱像儀表面溫度量測.................................71
6-2-3 理論值、模擬值與實際量測值之比較.................73
   6-2-4 濕式量測.................................................................76
   6-2-5 外接管路之改良.....................................................80
第七章 結論與未來方向.......................................................................82
7-1 結論..................................................................................82
7-2 未來方向與建議..............................................................83
參考文獻.................................................................................................84
附錄A  Parylene材料機械性質參數..................................................87
附錄B  SU-8與PDMS流道製程參數...............................................92
附錄C  Parylene材料機械性質參數...................................................93















圖目錄
圖 1-1全世界第一具微小馬達之掃描式電子顯微鏡照片....................2
圖 1-2由LIGA的技術製造出金屬熱挫曲致動器.................................6
圖 1-3方維倫教授提出以矽質材料開發出跳脫平面運動之熱致器....7
圖 1-4林宏樺所製作之熱挫曲微致動器................................................8
圖 1-5金屬佈線加熱後導致斷裂............................................................8
圖 1-6林岳正所製作之低溫熱挫曲微致動微幫浦................................9
圖 1-7 parylene微管壁在微加工過程中受損破裂導致氣泡進入..........9
圖 2-1聚對二甲苯沈積過程..................................................................15
圖 2-2聚對二甲苯N、C、D材料與化學結構......................................15
圖 2-3無閥幫浦上下震動時,淨流量往漸擴孔方向移動..................16
圖 2-4無閥幫浦構型..............................................................................17
圖 3-1分析介面概說圖..........................................................................21
圖 3-2 數值分析流程圖.........................................................................22
圖 3-3光罩設計之示意圖......................................................................23
圖 3-4 設定製造程序.............................................................................24
圖 3-5參數之設定..................................................................................25
圖 3-6欲分析之模型示意圖..................................................................25
圖 3-7網格分割設定..............................................................................26
圖 3-8網格分割示意圖..........................................................................27
圖 3-9運算後產生之參考數據示意圖..................................................28
圖 3-10通以2伏特電壓時薄膜結構之變形示意圖............................29
圖 3-11施加2伏特電壓於電極時之溫度分佈示意圖........................30
圖 4-1上電極式微幫浦..........................................................................31
圖 4-2電子蒸鍍機蒸鍍金屬..................................................................32
圖 4-3光阻定義出微流道與檔牆結構..................................................33
圖 4-4檔牆結構製作說明......................................................................34
圖 4-5檔橋已破壞導致氣泡進入腔體內部..........................................34
圖 4-6下電極式微幫浦未懸空之部位..................................................35
圖 4-7進出水孔與電極懸空部分相距約2000 μm.............................36
圖 4-8微幫浦薄膜空腔結構一覽圖......................................................37
圖 4-9製作微幫浦所需之光罩圖形......................................................40
圖 4-10下電極式微幫浦製作程序........................................................41
圖 4-11單顆元件光罩放大圖................................................................42
圖 4-12  SU-8光阻翻膜光罩圖............................................................43
圖 4-13光罩圖形放大圖........................................................................43
圖 5-1實驗架設圖..................................................................................45
圖 5-2將BOE滴覆於晶圓上................................................................46
圖 5-3氧化層開洞..................................................................................46
圖 5-4實驗架設圖..................................................................................47
圖 5-5 TMAH蝕刻後V型槽之外觀.....................................................48
圖 5-6晶圓周圍蝕刻後形成之缺口......................................................49
圖 5-7以光阻塗佈於矽晶圓周圍..........................................................49
圖 5-8晶圓周圍平整度極高..................................................................49
圖 5-9以丙酮舉離背面parylene...... .....................................................51
圖 5-10使用反應離子蝕刻機開洞後之全貌........................................51
圖 5-11以光阻定義金屬舉離層............................................................52
圖 5-12電子束蒸鍍機之顯示器............................................................53
圖 5-13蒸鍍金屬溫度過高導致parylene起泡....................................53
圖 5-14蒸鍍溫度改善後之電極全貌....................................................53
圖 5-15電極間距清晰可見....................................................................54
圖 5-16以SF6與CF4電漿蝕刻矽層與氧化層.....................................56
圖 5-17透過氧化層可觀察到進出水孔之流道犧牲層........................56
圖 5-18透過氧化層可觀察到懸空之金屬電極....................................57
圖 5-19背面矽質結構已完全移除........................................................57
圖 5-20金屬電極已懸空........................................................................58
圖 5-21噴嘴結構之光影變化................................................................58
圖 5-22噴嘴結構放大圖........................................................................59
圖 5-23電極上視圖................................................................................59
圖 5-24由光阻定義出之流道圖形........................................................60
圖 5-25將PDMS旋轉塗佈並加熱.......................................................61
圖 5-26鋪設廢棄晶片於PDMS表面已求得一真平面.......................61
圖 5-27脫模後之PDMS........................................................................62
圖 5-28將晶片與PDMS流道接合後之一覽圖...................................62
圖 6-1量測設備架設組織圖..................................................................64
圖 6-2探針檯使用狀況圖......................................................................65
圖 6-3外接電源設備圖..........................................................................65
圖 6-4薄膜光影之變化圖......................................................................66
圖 6-5光學干涉儀架設圖......................................................................67
圖 6-6變形量約為26~27 nm...............................................................68
圖 6-7模擬值與實際量測值之比較圖..................................................69
圖 6-8模擬值與實際量測值之比較圖..................................................70
圖 6-9模擬值與實際量測值之比較圖..................................................70
圖 6-10侷限量測區間一覽圖................................................................72
圖 6-11不同輸入電壓下所產生不同溫度之比較圖............................72
圖6-12金屬電極與電阻關係式符號表示圖.........................................73
圖6-13熱阻示意圖..................................................................................74
圖6-14模擬值、量測值與理論值之電極溫度比較圖...........................75
圖6-15流道層與晶片之爆炸視圖.........................................................76
圖6-16振動薄膜以及噴嘴結構上視圖.................................................77
圖6-17流道內液體運輸之連續拍攝圖.................................................77
圖6-18 parylene薄膜因電極加熱過劇,導致薄膜損壞.......................78
圖6-19以手工製作之轉接座極為粗糙.................................................79
圖6-20以鐵弗龍管作為外接管路.........................................................80
圖6-21於管路上黏貼刻度尺以便觀察..................................................80
圖6-22製作PDMS外接管路轉接座說明圖..........................................81
圖C-1 Parylene dimer克數與沉積膜厚對應曲線..................................93
圖D-1建立parylene特性參數................................................................94
圖D-2製程編排設定圖...........................................................................94
圖D-3運算進階設定一覽圖...................................................................95
圖D-4邊界條件設定一覽圖...................................................................95



表目錄
表6-1由1到10伏特電壓時,電流與功率之數據圖..............................74
表6-2 輸入0-6伏特電壓所驅動之流量比較表...................................78
參考文獻
[1]	R. Feynman, “There’s plenty of room at the bottom,” J. of Micro electromechanical Systems, v.1, pp.60-66, 1992.
[2]	楊龍杰,『掌握微機電』,台中,滄海書局,2007年。
[3]	R. Feynman, “Infinitesimal machinery,” J. of Micro electromechanical Systems, v.2, pp.4-14, 1993.
[4]	Y.-C. Tai, L.-S. Fan, and R.S. Muller,”IC-processed micro-motors: design, technology, and testing” Micro Electro Mechanical Systems, 1989, Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. IEEE, 20-22 Feb., 1989, pp. 1-6.
[5]	F.R.Liao, et al , “An Implantable Integrated SIGE FM Transmitter for HRV Biotelemetry,” IEEE BioCAS2004, S1.8-9 – 11. (EI), 2004 
[6]	K. Walsh, J. Norville and Y. C. Tai, “Photoresist as a sacrificial layer by dissolution in acetone,” Proceeding of the 14th IEEE MEMS, 2001, pp.114-117.
[7]	Y. Mizuno, M. Liger and Y. C. Tai, “Nanofludic flowmeter using carbon sensing element,” Proceeding of the 17th IEEE MEMS, Jan 25-29, 2004, pp.322-325
[8]	L. J. Yang, T. J. Yao, Y. L. Huang, Y. Xu and Y. C. Tai, “Marching velocity of capillary meniscuses in microchannels,” Proceeding of the 15th IEEE MEMS, Jan 20-24, 2002, pp.93~96.
[9]	K. Minami, H. Morishita and M. Easash, “A bellows-shape electrostatic microactuator,” Sensors and Actuators A, Vol. 72, Issue: 3, February 16, 1999, pp.269~276.
[10]	K. Yoo, C. Gibbons, Q. T. Su, R. N. Miles and N. C. Tien, “Fabrication of biomimetic 3-D structured diaphragms,” Sensors and Actuators A, Vol. 97-98, April 1, 2002, pp.448~456.
[11]	C. Xu, W. Lemon and C. Liu, “Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, Vol.96, Issue: 1, January 31, 2002, pp.78~85.
[12]	H. S. Noh, K. S. Moon, A. Cannon, P. J. Hesketh and C. P. Wong, “Wafer bonding using microwave heating of parylene for MEMS packaging,” Proceedings of Electronic Components and Technology 2004, Vol. 1, June 1-4, 2004, pp.924~930.
[13]	H. S. Noh, K. S. Moon and P. J. Hesketh, “Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel,” Sensors and Actuators B, Vol. 102, Issue: 1, September 1, 2004, pp.78~85.
[14]	戴霆樘,“利用聚-對二甲苯微機電技術製作微感測器與微致動器”,淡江大學機械與機電工程學系碩士學位論文,2003年6月。
[15]	http://www.paryleneengineering.com/
[16]	S. K. Fan, C. Hashi and C. J. Kim, “Manipulation of multiple droplet on N-×M
grid by cross-reference EWOD driving scheme and pressure-contact packaging,”
Proceeding of the 16TH IEEE MEMS, Jan 19-23, 2003, pp.694~697.
[17] G.T.A Kovacs, “Micromachined Transducers Source Book,” McGraw-Hill,
Washington DC, 2000, pp.845~852.
[18] D. S. Lee, H. C. Yoon and J. S. Ko, “Fabrication and Characterization of A
Bidirectional Valveless Peristaltic Micropump and Its Application to A Flow-type
Immunoanalysis,” Sensors and Actuators B, Vol. 103, 2004, pp.409~415.
[19] S. Matsumoto, A. Klein and R. Maeda, “Development of Bi-direction Valve-less
Micropump for Liquid,” Proceeding of the 12TH IEEE MEMS, Jan 17-21, 1999,
pp.141~146.
[20] R. Schellin, G. Hess, W. Kuehnel, G. M. Sessler and E. Fukada, “Silicon
Subminature Microphones with Organic Piezoelectric Layers-fabrication and
Acoustical Behavior,” Transactions on Electrical Insulation, Vol. 27 Issue: 4, 1992,
pp.867~871.
[21] D. S. Popescu, P. Lerch, C. Dunare and D. Dascalu, “Modelling and Optimisation
for An Electrostatic Actuation of A Valveless Micropump Using A Silicon Buckled
Membrane,” Semiconductor Conference’97, Vol. 1, pp.157~160.
[22] T. Furuhata et al., “Electrostatic comb-drive microactuators with sub-micro gaps,”
Trans. Inst. Elect. Eng. Jpa., 112-A, 1992, pp.999~1006.
[23] D. Bosch, et al., “A Silicon Microvalve with Combined
Electromagnetic/Electrostatic Actuation,” Sensors and Actuators A, Vol.37-38,
1993, pp.684~692.
[24] C. W. Storment, D. A. Borkholder, V. Westerlind, J. W. Suh, N. I. Maluf and G. T.
A. Kovacs, “Flexible, Dry-released Process for Aluminum Electrostatic
Actuators,” IEEE J. Microelectromech. Syst., Vol. 3, Issue: 3, 1994, pp.90~96.
[25] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon and E. G. Lovell,
“Thermo-magnetic metal flexure actuators,” Tech. Dig. Solid-State Sen. Act.
Workshop, Hilton Head Island, SC, (1992), June 22-25, 1992, pp.73-75.
[26] C. Lo, H. Y. Lin and W Fang, “A Novel Out-of-plane Electrothermal
Microactuator,” Proceeding of 2001 Microsystem Technical Conference,
Dusseldorf, Germany, March 2001.
[27] W. C. Chen, C. C. Chu, J. Hsieh, and W. Fang, “A Reliable Single-layer
Out-of-plane Micromachined Thermal Actuator,” Sensors and Actuators A, Vol.
103, 2003, pp. 48-58.
[28] 林宏樺,“以聚-對二甲苯微機技術製作熱挫曲式微型致動器”, 淡江大學機
械與機電工程學系碩士學位論文,2005年7月。
[29] 林岳正,“低驅動電壓之熱致動微元件”,淡江大學機械與機電工程學系碩士
學位論文,2007年6月。
85
[30] E. Stemme and G. Stemme, “ A valveless diffuser/nozzle-based fluid pumps,”
Sensors and Actuators A, Vol. 39, 1993, pp.159-167.
[31] Vishal Singhal and Suresh V. Garimella, “A Novel Valveless Micropump With
Electrohydrodynamic Enhancement for High Heat Flux Cooling,” IEEE
Transactions on Advanced Packaging, Vol. 28, No. 2, May 2005.
[32] D. Muhr, et al., “Polymerase chain reaction fidelity and denaturing highperformance
liquid chromatography,” Journal of Chromatography B, Vol. 782,
Issue: 1-2, December 25, 2002, pp. 105~110.
[33] T. Seki, M. Sakata, T. Nakajima and M. Matsumoto, “Thermal Buckling Actuator
for Micro Relays,” Transducers’97, Vol. 2, pp.1153~1156
[34] Z. Fan, J. Engel, J. Chen, and C. Liu, “Parylene Surface Micromachined
Membranes for Sensor Applications,” IEEE/ASME Journal of
Microelectromechanical Systems, vol. 13, no. 3, pp. 484-490, 2004.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信