淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2608200812271800
中文論文名稱 熱氣動無閥門式微幫浦之研製
英文論文名稱 Fabrication of Thermopneumatic Valveless Micropump
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 林子淵
研究生英文姓名 Tzu-Yuan Lin
學號 695370063
學位類別 碩士
語文別 中文
口試日期 2008-06-18
論文頁數 85頁
口試委員 指導教授-楊龍杰
委員-張培仁
委員-黃榮堂
委員-李其源
委員-施文彬
中文關鍵字 聚二甲基矽氧烷  聚對二甲苯  無閥門  微幫浦  漸縮/漸張管 
英文關鍵字 PDMS  Parylene  Valveless  Micropump  Nozzle/Diffuser 
學科別分類 學科別應用科學機械工程
中文摘要 本研究成功使用適合生物相容性材料的聚二甲基矽氧烷(PDMS)研製出熱氣動無閥門式微幫浦。熱氣動無閥門式微幫浦構型,組成可分為加熱電極、加熱腔體、致動薄膜、含有漸縮/漸張管之致動腔體、微流道進出口接管等部分。此微幫浦作動是以一方波的工作電壓,使電極加熱致動腔體裡的空氣,利用氣體膨脹的機制,使PDMS薄膜能夠擠壓含有漸縮/漸張管之流道,以達到驅動的效果。
為了研製出較佳性能之熱氣動無閥門式微幫浦,本研究主要探討在相同漸縮/漸張管開口角度,設計三種比例的入口端與出口端。經由本文所探討的熱氣動無閥門式微幫浦驅動流體之情形,我們得知每分鐘的工作流量是奈米公升等級。
英文摘要 A thermopneumatic valveless micropump has been successfully developed in this research by applying a biocompatible material, polydimethylislioxane (PDMS). The micropump consists of only one set of heater on the glass slide, a thermopneumatic actuation chamber, and an actuation diaphragm. Additionally it has a microchannel with a nozzle/diffuser structure and inlet/outlet parts. In this valveless microchannel, the fluid is driven by asymmetric flow resistance produced from the nozzle/diffuser configuration. The actuation diaphragm between the gas-pneumatic chamber and the flowing channel can be bent up and down by exploiting air expansion that is induced by increasing the heater temperature.
In this research, the ratio of the narrowest and widest spaces in the nozzle/diffuser was used to study the performance of the micropump. There are three designed ratios with the same included angle to be investigated for an understanding of the impact of the thermopneumatic valveless micropump. According to the exploration of the driven flow rate of the thermopneumatic valveless micropump, it has been discovered that the flow rate of the thermopneumatic micropump is in the scale of nano-liter per minute.
論文目次 目錄
中文摘要..................................................................................................Ⅰ
英文摘要………………………….…………..………………...............Ⅱ
目錄……………………………………………..………………........…Ⅳ
圖目錄………………………………………………………………..…Ⅶ
表目錄……………………………………………………………..…ⅩⅢ
第一章 緒論………………………………………………..……………1
1-1 前言........…………………………………….……………1
1-2 研究動機………………………………….………………2
1-3 文獻回顧………………….................................................3
1-4 研究目的…………………................................................11
1-5 論文架構…………………................................................11
第二章 熱氣動無閥門式微幫浦之工作原理與設計……....................13
2-1無閥門式微幫浦之基本原理………………………..13
2-2 熱氣動無閥門式微幫浦之理論分析………………….14
2-3熱氣動無閥門式微幫浦之漸縮/漸張管幾何形狀模擬.19
2-3-1 CFDRC軟體介紹…..………..…………………...19
2-3-2 CFDRC軟體模擬………………............………...21
2-3-2-1 漸縮/漸張管模型為銳利端入口之模擬.22
2-3-2-2 漸縮/漸張管模型為圓弧端入口之模擬.28
2-4熱氣動無閥門式微幫浦之設計……..…………….34
第三章 熱氣動無閥門式微幫浦之製程技術………............................38
3-1 光罩製作…………………………………………...........38
3-2 基本製程技術……………………..…………………….39
3-2-1 晶片清潔…..………..……………..…..………...39
3-2-2 微影製程………………............………………...40
3-3 熱氣動無閥門式微幫浦之製程…………………...........44
3-3-1 加熱電極製作……………………………………44
3-3-2 SU-8母模製作…………………………………….47
3-3-3 PDMS微流道、加熱腔體與致動薄膜製作…...….48
3-3-4 PDMS微流道進出口製作………………………..50
3-4 氧氣電漿表面改質技術製作熱氣動無閥門式微幫浦...51
第四章 高分子薄膜防止PDMS材料之洩漏問題.........................56
4-1 Parylene介紹………………….…………...………..56
4-2 Parylene沉積過程…………………………………..57
4-3 Parylene沉積於熱氣動無閥門式微幫浦……..……58
第五章 熱氣動無閥門式微幫浦之測試與分析..…………………..…62
5-1 實驗量測…………………………...……………………62
5-2 實驗數據計算……………………..…….………………64
5-3 實驗數據與分析…………………..…….………………65
第六章 改變設計之熱氣動無閥門式微幫浦與實驗量測……………67
6-1熱氣動無閥門式微幫浦之新構型設計……….…...........67
6-2熱氣動無閥門式微幫浦之製程改良…………................68
6-3 熱氣動無閥門式微幫浦元件與量測.........……......71
第七章 結論與未來建議............................................…………………73
7-1 結論.......................................................…………............73
7-2 未來建議..................................................……….............73
參考文獻………………………………………………………………..75
作者發表著作…………………………………..………………………79
附錄A………………………………………….………………………..80
A-1 熱氣動無閥門式微幫浦元件製作問題……….............80
A-2解決熱氣動無閥門式微幫浦元件製作問題……….......83
A-2-1改良製作方式-方法一……...................................83
A-2-2改良製作方式-方法二……...................................84
A-2-3改良製作方式-方法三……...................................85


圖目錄
圖1-1 微幫浦之分類......................................................................................3
圖1-2 三維被動微混和器結構:(a)流道結構上視圖;(b)三維微流道局部放大圖;(c)三維微流道對準結合機制;(d)三維被動微混和器成品……………………………………………………........7
圖1-3 微閥門與微幫浦製作之示意圖……............................................8
圖1-4 (a)單一組致動薄膜之微閥門;(b)數組致動薄膜搭配相位控制之蠕動式微幫浦……........................................................................8
圖1-5 氣動式蠕動微幫浦元件圖……………........................................9
圖1-6 氣動式蠕動微幫浦作動原理示意圖:(a)上視圖;(b) A-A’剖面視圖................................................................................................9
圖1-7 熱氣動式蠕動微幫浦示意圖……..............................................10
圖1-8 (a)熱氣動式蠕動微幫浦依驅動電壓作動的工作原理;(b)熱氣動式蠕動微幫浦之加熱電極的三相驅動電壓…….......................10
圖1-9 論文架構..………………………………………………………12
圖2-1 無閥門式微幫浦的工作原理……………………...……..…….14
圖2-2 CFD-ACE物理分析模組…….………………………………….20
圖2-3 CFDRC之分析流程…...…………………...…………………....21
圖2-4 nozzle/diffuser:(a)銳利端;(b)圓弧端………………………….21
圖2-5 CFD-GEOM所建立之漸縮/漸張管模型:(a)銳利端;(b)圓弧端…………………................................................................….22
圖2-6漸縮管元件(銳利端)於CFD-ACE所定義之邊界與初始條件…………………...…………………………………………..23
圖2-7 漸縮管之速度場………………..…………………...………….23
圖2-8 漸縮管之速度分佈……………………………..…...………….24
圖2-9 漸縮管之壓力場…………………………………...…………...24
圖2-10 漸縮管之壓力分佈…………………...……………………….25
圖2-11漸張管元件(銳利端)於CFD-ACE所定義之邊界與初始條件………………………………………………...………...….25
圖2-12 漸張管之速度場……………….....………………………..….26
圖2-13 漸張管之速度分佈…..……………………………….……….26
圖2-14 漸張管之壓力場…..……………………………….………….27
圖2-15 漸張管之壓力分佈……………………………….……..…….27
圖2-16 漸縮管元件(銳利端)於CFD-ACE所定義之邊界與初始條件…………………………………………………………...…28
圖2-17 漸縮管之速度場……………………..…………...…..……….28
圖2-18 漸縮管之速度分佈………..…………..…………...………….29
圖2-19 漸縮管之壓力場………..…………………..……...………….29
圖2-20 漸縮管之壓力分佈……..…………………..……...………….30
圖2-21 漸張管元件(圓弧端)於CFD-ACE所定義之邊界與初始條件……………………………………………………………...30
圖2-22 漸張管之速度場..………………………………….………….31
圖2-23 漸張管之速度分佈………………………..…….....………….31
圖2-24 漸張管之壓力場…..……………...…………………..……….32
圖2-25 漸張管之壓力分佈..…………………..…………...………….32
圖2-26 無閥門式微幫浦的工作原理..…………………...……..…….33
圖2-27 漸張管角度與壓力損失係數關係圖……….……..………….35
圖2-28 漸張管流場模型完全穩定圖:(a)垂直流道漸張管之幾何外型;(b)垂直流道漸張管流場模型完全穩定圖……………....36
圖2-29 熱氣動無閥門式微幫浦之漸縮/漸張管設計示意圖。..….......37
圖3-1 熱氣動無閥門式微幫浦之3D示意圖…....................................38
圖3-2 正光阻與負光阻之製備程序,正光阻最後的明暗圖形與光罩相同,負光阻則反之……....................................................................41
圖3-3 黃金螺旋狀加熱電極示意圖……...................................................44
圖3-4 金屬舉離法:(a)光阻曝光;(b)顯影;(c)金屬蒸鍍;(d)舉離,留下金屬線路.............................................................................46
圖3-5 製作完成之黃金螺旋狀加熱電極晶片......................................46
圖3-6 製作完成之SU-8微結構母模......………………………...…....48
圖3-7 聚二甲基矽氧烷之化學結構............…………………..............48
圖3-8 PDMS微流道製作流程圖............................................................49
圖3-9 PDMS微流道................................................................................50
圖3-10 #19 gauge之中空針頭.............................................................51
圖3-11 PDMS微流道進出口製作:(a)挖管方式;(b)進出口挖孔完成...............................................................................................51
圖3-12 PDMS經氧氣電漿表面處理之示意圖......................................52
圖3-13 熱氣動無閥門式微幫浦之結合示意圖....................................53
圖3-14 OM對準方式..............................................................................54
圖3-15 熱氣動無閥門式微幫浦............................................................55
圖4-1 三種不同聚對二甲苯之結構……..............................................57
圖4-2 parylene沉積過程………….........................................................58
圖4-3 簡易式微流道..............…………..........…..................................59
圖4-4 沉積完parylene之簡易式微流道OM圖....................................59
圖4-5 沉積完parylene之簡易式微流道SEM圖..................................60
圖4-6 沉積完parylene之熱氣動無閥門式微幫浦......………………..61
圖5-1 波形產生器…..............................................................................62
圖5-2 實驗量測與記錄…………..........................................................63
圖5-3 紅外線熱像儀觀察工作溫度變化:(a)未通電;(b)通電.............63
圖5-4 鐵氟龍管之液面變化:(a)作動開始;(b)作動開始之第十分鐘............………………………………………………………64
圖5-5 未沉積parylene在熱氣動無閥門式微幫浦之工作流體流量對工作頻率的曲線圖..........…………………………………………65
圖5-6 沉積parylene與未沉積Parylene在熱氣動無閥門式微幫浦,其截面積相等條件下之工作流體流量對工作頻率的曲線圖......66
圖6-1新型熱氣動無閥門式微幫浦之漸縮/漸張管設計示意圖….…..67
圖6-2新型熱氣動無閥門式微幫浦之尺寸設計示意圖………………68
圖6-3 加熱腔體OM圖……….…………….…….……………………69
圖6-4 改良之熱氣動無閥門式微幫浦結合示意圖………..…………69
圖6-5 改良熱氣動無閥門式微幫浦3D示意圖….……….………..…70
圖6-6 熱氣動無閥門式微幫浦元件…………………………..………71
圖6-7 熱氣動無閥門式微幫浦量測結果…..…………………………72
圖A-1 加熱電極產生氧化還原現象...………….….…………………80
圖A-2 鐵氟龍管之液面變化:(a)作動開始;(b)作動開始後之第1秒鐘………..….……………………………….…………….……81
圖A-3 DV拍攝鐵氟龍管之液面變化:(a)作動開始;(b)作動開始後之第45秒鐘………………………………….…..…………….…82
圖A-4 致動薄膜與加熱電極接合……………..….………..…………83



































表目錄
表2-1 漸縮/漸張管效能比較表..…….………………………………..34
參考文獻 參考文獻
[1] Feynman, R. P., “There’s plenty of room at the bottom,” Journal of Microelectromechanical Systems, 1(1), pp. 60-66, March 1992.
[2] Xia, Y., Whitesides, G. M. “Soft lithography,” Annual Review of Materials Science, 28(1), pp. 153-184, 1998.
[3] Xia, Y., Whitesides, G. M. “Soft lithography,” Angewandte Chemie - International Edition, 37(5), pp. 551-575, 1998.
[4] Laser, D. J. and Santiago, J. G., “A Review of Micropumps,” Journal of Micromechanics and Microengineering, 14(6), pp. R35-R64, 2004.
[5] Woias, P., “Micropumps-past, progress and future prospects,” Sensors and Actuators B: Chemical, 105, pp. 28-38, 2005.
[6] Sefton, M.V., Lusher, H.M., Firth, S.R. and Waher, M.U. “Controlled release Micropump for insulin administration,” annals of Biomedical Engineering, 7(3-4), pp. 329-343, 1979.
[7] Van De Pol, F.C.M., Wonnink, D.G.J., Elwenspoek, M. and Fluitman, J.H.J. “Thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices,” Sensors and actuators, 17(1 -2 PT1), pp. 139-143, 1989.
[8] Stemme, E. and Stemme, G. “Valveless diffuser/nozzle-based fluid pump,” Sensors and Actuators, A: Physical, 39(2), pp. 159-167, 1993.
[9] Gerlach, T., Schuenemann, M. and Wurmus, H. “New micropump principle of the reciprocating type using pyramiddic micro flowchannels as passive valves,” Journal of Micromechanics and Microengineering, 5(2), pp. 199-201, 1995.
[10] Olsson, A., Stemme, G., and Stemme, E. “Diffuser-element design investingation for valve-less pumps,” Sensors and actuators, A: Physical, 57(2), pp. 137-143, 1996.
[11] Olsson, A., Stemme, G., and Stemme, E. “Micromachined diffuser/nozzle elements for valve-less pumps,” IEEE, Piscataway, NJ, USA, San Diego, CA, USA, pp. 378-383, 1996.
[12] Olsson, A., Enoksson, P., Stemme, G., and Stemme, E. “Micromachined flat-walled valveless diffuser pump,” Journal of Microelectromechanical Systems, 6(2), pp. 161-166, 1997.
[13] Olsson, A., Stemme, G., and Stemme, E. “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,” Sensors and actuators, 84(1), pp. 165-175, 2000.
[14] Jo, B.-H., Van Lerberghe, L.M., Motsegood, K.M., Beebe, D.J. “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectromechanical Systems, 9(1), pp. 76-81, 2000.
[15] Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A., Quake, S.R. “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, 288(5463), pp. 113-116, 2000.
[16] Jeong, O.C., Konishi, S., “Fabrication and drive test of pneumatic PDMS micro pump,” Sensors and Actuators, A: Physical, 135(2), pp. 849-856, 2007.
[17] Mamanee, W., Tuantranont, A., Afzulpurkar, N.V., Porntheerapat, N., Rahong, S., Wisitsoraat, A. “PDMS based thermopnuematic peristaltic micropump for microfluidic systems,” Journal of Physics: Conference Series, 34(1), pp. 564-569, 2006.
[18] Jiang, X.N., Zhou, Z.Y., Huang, X.Y., Li, Y., Yang, Y., Liu, C.Y., “Micronozzle/diffuser flow and its application in micro valveless pumps,” Sensors and Actuators, A: Physical, 70(1-2), pp. 81-87, 1998.
[19] 國家高速網路與計算中心,CFD-ACE+基礎課程訓練手冊。
[20] White, F. M. “Fluid Mechanics,” McGraw-Hill, New York, 3rd edition, 1994.
[21] Fox, R. W., Kline, S. J., “Flow regime data and design methods for curved subsonic diffusers,” Journal of Basic Engineering, 84, pp. 303-312, 1962.
[22] 楊龍杰,「掌握微機電」,滄海書局,2007年6月初版。
[23] 王信雄,「薄膜式微型壓力感測器暨熱挫曲式驅動器之設計與研製」,淡江大學機械與機電工程學系博士論文,2007年6月。
[24] Shin, Y.S., Cho, K., Lim, S.H., Chung, S., Park, S.-J., Chung, C., Han, D.-C., Chang, J.K. “PDMS-based micro PCR chip with Parylene coating,” Journal of Micromechanics and Microengineering, 13 (5), pp. 768-774, 2003.
[25] Tong, H.M., Mok, L., Grebe, K.R., Yeh, H.L., Srivastava, K.K., Coffin, J.T., “Parylene encapsulation of ceramic packages for liquid nitrogen application,” Proceedings - Electronic Components and Technology Conference 1, pp. 345-350, 1990.
[26] Charlson, E.M., Charlson, E.J., Sabeti, R., “Temperature selective deposition of parylene-C,” IEEE Transactions on Biomedical Engineering 39 (2), pp. 202-206, 1992.
[27] Olson, Roger, Yira, Joseph., “Relative compatibility of parylene conformal coatings with no-clean flux residues,” IEEE/CHMT European International Electronic Manufacturing Technology Symposium, pp. 157-161, 1993.
[28] Yang, G.-R., Ganguli, S., Karcz, J., Gill, W.N., Lu, T.-M., “High deposition rate parylene films,” Journal of Crystal Growth 183 (3), pp. 385-390, 1998.
[29] Yang, X., Yang, J.M., Tai, Y.-C., Ho, C.-M., “Micromachined membrane particle filters,” Sensors and Actuators, A: Physical 73 (1-2), pp. 184-191, 1999.
[30] Wang, Xuan-Qi, Tai, Yu-Chong, “Normally closed in-channel micro check valve,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 68-73, 2000.
[31] Bera, M., Rivaton, A., Gandon, C., Gardette, J.L., “Comparison of the photodegradation of parylene C and parylene N,” European Polymer Journal, European Polymer Journal 36 (9), pp. 1765-1777, 2000.
[32] Yao, T.-J., Walsh, K., Tai, Y.-C., “Dielectric charging effects on parylene electrostatic actuators,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 614-617, 2002.
[33] Noordegraaf, Jan, Hull, Harry, “C-SHIELD Parylene allows major weight saving for EM shielding of microelectronics,” IEEE International Symposium on Polymeric Electronics Packaging, PEP, pp. 189-196, 1997.
[34] http://www.scscoatings.com/
[35] http://www.paryleneengineering.com/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信