淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2607201610071300
中文論文名稱 綠屋頂淨化水質之評估
英文論文名稱 Assessment of water quality improvement of green roofs runoff
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 林己豪
研究生英文姓名 Ji-Hao Lin
學號 603480343
學位類別 碩士
語文別 中文
口試日期 2016-07-09
論文頁數 74頁
口試委員 指導教授-康世芳
委員-林鎮洋
委員-陳起鳳
中文關鍵字 綠屋頂  生長基層  植物  水質 
英文關鍵字 Green roof  Substrates  Plant species  Water quality 
學科別分類 學科別應用科學環境工程
中文摘要 近年都市化導致熱島效應越嚴重,綠屋頂對環境的效益多,緩解熱島效應為其中一項,但對於綠屋頂逕流水水質之研究較不足,所以本研究自行建置綠屋頂模型,使用三種植物(玫瑰景天、波士頓腎蕨與六月雪)及三種生長基層(陽明山土、輕質土與混合土),探討植物及生長基層種類對逕流水水質與植物生長之影響。實驗期間為2015年10月30日至2016年5月31日,為期七個月,累積共收集八次降雨事件之水樣,分析植物生長及水質,水質項目包括pH值、懸浮固體(SS)硝酸鹽氮(NO3--N)、氨氮(NH4+-N)、正磷酸鹽(PO43--P)、總磷(TP)以及化學需氧量(COD)。此外,以雨量計量測降雨量,混合土由陽明山土與廢玻璃以3:1混合配製之。
結果顯示,8次降雨事件之降雨量範圍為29 至 64 mm植物生長情形玫瑰景天生長最好,波士頓腎蕨次之,最差的為六月雪,生長速率平均分別為0.053 cm/day、0.097 cm/day、0.043 cm/day,其中又以輕質土生長最好。輕質土中有機物及氮磷含量最高,且其容積密度最低、孔隙率最高,有較好的通透性。以水質項目分析,不論何種生長基層及植物皆有將雨水中和的效果,pH平均值由5.7上升至8.2。此外,在不同生長基層中硝酸鹽氮、TP及COD濃度為輕質土最高,混合土次之,陽明山土最低;硝酸鹽氮濃度分別為2.55 mg/L、1.19 mg/L、0.99 mg/L;TP分別為3.87 mg/L、0.17 mg/L、0.11 mg/L;COD分別為86.1 mg/L、17.8 mg/L、15.4 mg/L。SS與硝酸鹽氮於不同植物中有明顯的差異,SS於六月雪、玫瑰景天與波士頓腎蕨平均分別為199 mg/L、407 mg/L、448 mg/L,六月雪最低;硝酸鹽氮濃度為玫瑰景天最低,其平均分別為3.03 mg/L、0.63 mg/L、1.08 mg/L。整體來說,此研究綜合水質及植物生長情形結果為玫瑰景天搭配陽明山土逕流水水質濃度最低。
英文摘要 In recent, urbanization leads the more serious of the heat island effect. Green roofs have multiple environmental benefits, one of benefits is to alleviate the heat island effect, but the information related with runoff water quality of green roofs has not cleared yet. In the present study, experimental containers with 3 substrates (Yangmingshan soil, Light soil, Mix soil) and 3 plant species (Sedum nussbaumerianum hyb (Se); Nephrolepis exaltata Schott (Ne) and Serissa foetida (Sf)) were constructed. This study investigated the effect of substrates and plant species on runoff water quality and plant growth rate. The data were collected from 8 real rainfall events to analyze the runoff water quality and measure plants grown in different substrates. The water quality analysis includes pH, suspended solid (SS), nitrate (NO3--N), ammonia (NH4+-N), orthophosphate (PO43--P), total phosphorus (TP) and chemical oxygen demand (COD). Furthermore, rainfall was measured by rain gauge meter. Mix soil was prepared by mixing Yangmingshan soil with waste glass at a ratio of 3:1.
The results show that the rainfall ranged from 29 to 64 mm during 8 rainfall events. The plant growth rate of Sedum nussbaumerianum hyb (Se), Nephrolepis exaltata Schott (Ne) and Serissa foetida (Sf) were 0.053 cm/day, 0.097 cm/day, 0.043 cm/day, respectively, and those were the best grown in the Light Soil. Light Soil has the highest in organic matter, nitrogen and phosphorus content, and the lowest bulk density, the highest porosity and has a good permeability. The water quality result showed that the acid rain was neutralized in every plant species and substrates, pH average value from 5.7 to 8.2. The nitrate, TP and COD concentration was the highest in Light Soil. The nitrate concentration in Light Soil, Mix Soil (Yangmingshan soil mixed with waste glass at ratio of 3:1) and Yangmingshan soil were 2.55 mg/L, 1.19 mg/L and 0.99 mg/L, respectively. The TP concentration in Light Soil, Mix Soil and Yangmingshan soil were 3.87 mg/L, 0.17 mg/L and 0.11 mg/L, respectively. The COD concentration in Light Soil, Mix Soil and Yangmingshan soil were 86.1 mg/L, 17.8 mg/L and 15.4 mg/L, respectively. The SS and the nitrate concentration have the significant differences in the different plant species, the SS average concentration in Sf, Se and Ne were 199 mg/L, 407 mg/L and 448 mg/L, respectively. The nitrate average concentration in Sf, Se and Ne were 3.03 mg/L, 0.63 mg/L and 1.08 mg/L, respectively. It is concluded that the Sedum nussbaumerianum hyb with Yangmingshan soil has the best runoff water quality and plant growth rate.
論文目次 目錄
目錄 I
表目錄 III
圖目錄 IV
第一章、 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章、 文獻回顧 4
2.1 綠屋頂系統介紹 4
2.1.1 綠屋頂的結構 4
2.1.2 綠屋頂的類型 6
2.2 逕流水量與水質 7
2.2.1 水量 7
2.2.2 水質 9
2.3 生長基質之重要性 11
2.4 植栽種類之重要性 13
第三章、 實驗方法與設計 15
3.1 實驗容器與結構 15
3.2 生長基質 17
3.2.1生長基質粒徑分析實驗 19
3.2.2土壤容積密度與孔隙率 19
3.3 植栽種類 20
3.4 水質分析項目與分析方法 24
3.4.1懸浮固體物(SS) 26
3.4.2氨氮(NH4+-N) 27
3.4.3硝酸鹽氮(NO3--N) 28
3.4.4正磷酸鹽(PO43--P)、總磷(TP) 29
3.4.5化學需氧量(COD) 30
第四章、 結果與討論 31
4.1生長基層物理及化學特性 31
4.1.1粒徑 31
4.1.2容積密度與孔隙率 33
4.1.3生長基層化學成分 34
4.2降雨事件 35
4.3植物生長情形 37
4.4水質分析結果 42
4.4.1pH 44
4.4.2懸浮固體(SS) 46
4.4.3硝酸鹽氮(NO3--N) 49
4.4.4氨氮(NH4+-N) 52
4.4.5正磷酸鹽(PO43--P) 54
4.4.6總磷(TP) 56
4.4.7化學需氧量(COD) 59
第五章、 結論與建議 61
5.1結論 61
5.2建議 62
文獻回顧 63


表目錄
表 2.1 綠屋頂種類比較 6
表2.2 綠屋頂水質研究文獻整理 10
表3.1 成分表 17
表3.4 國內常見綠屋頂植栽 23
表4.1 生長基層容積密度與孔隙率 33
表4.2 生長基層成分 34
表4.3 降雨事件 36
表4.4雨水水質分析結果 36
表4.5陽明山土植物生長情形 38
表4.6輕質土植物生長情形 39
表4.7混合土植物生長情形 39
表4.8 各名稱項目代碼表 39
表4.9陽明山土水質分析結果平均值 42
表4.10輕質土水質分析結果平均值 42
表4.11混合土水質分析結果平均值 43

圖目錄
圖 2.1 綠屋頂結構示意圖(綠屋頂綠化手冊) 4
圖3.1 實驗容器及濾網 16
圖3.2 生長基質固定深度10公分 16
圖3.3 生長基層種類 18
圖3.4混合土配比 18
圖3.5 玫瑰景天 21
圖3.6 波士頓腎蕨 21
圖3.7 六月雪 21
圖3.8實驗位置照片(種植3個月) 22
圖3.9 流程圖 25
圖3.10 氨氮濃度與吸光值之檢量線 27
圖3.11硝酸鹽氮濃度與吸光值之檢量線 28
圖3.12 磷濃度與吸光值之檢量線 29
圖4.1 生長基層粒徑分布圖 32
圖4.2 實驗期間降雨量統計圖 35
圖4.3 種植七個月後植物生長圖 40
圖4.4 植物生長速率 41
圖4.5 pH盒鬚圖 45
圖4.6 pH值時間變化圖 45
圖4.7 SS盒鬚圖 46
圖4.8 SS濃度時間變化圖 47
圖4.9 玫瑰景天種植在混合土中(七個月後) 48
圖4.10 硝酸鹽氮盒鬚圖 51
圖4.11硝酸鹽氮濃度時間變化圖 51
圖4.12 氨氮盒鬚圖 53
圖4.13 氨氮濃度時間變化圖 53
圖4.14 正磷酸鹽盒鬚圖 55
圖4.15 正磷酸鹽濃度時間變化圖 55
圖4.16 總磷盒鬚圖 57
圖4.17 總磷濃度時間變化圖 58
圖4.18 COD盒鬚圖 59
圖4.19 COD濃度時間變化圖 60

參考文獻 1. Alsup, S., Ebbs, S., & Retzlaff, W. (2010). The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosystems, 13(1), 91-111.
2. Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and urban planning, 67(1), 9-26.
3. Berndtsson, J. C., Emilsson, T., & Bengtsson, L. (2006). The influence of extensive vegetated roofs on runoff water quality. Science of the Total Environment, 355(1), 48-63.
4. Berndtsson, J. C., Bengtsson, L., & Jinno, K. (2009). Runoff water quality from intensive and extensive vegetated roofs.Ecological Engineering,35(3), 369-380.
5. Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360.
6. Bliss, D. J., Neufeld, R. D., & Ries, R. J. (2009). Storm water runoff mitigation using a green roof. Environmental Engineering Science, 26(2), 407-418.
7. Carpenter, D. D., & Kaluvakolanu, P. (2010). Effect of roof surface type on storm-water runoff from full-scale roofs in a temperate climate. Journal of Irrigation and Drainage Engineering, 137(3), 161-169.
8. Chen, C. F. (2013). Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecological Engineering, 52, 51-58.
9. Chen, C. F., & Kang, S. F. (2016). EFFECTS OF SUBSTRATES AND PLANT SPECIES ON WATER QUALITY OF EXTENSIVE GREEN ROOFS. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 14(2), 77-91.
10. Dunnett, N., Nagase, A., Booth, R., & Grime, P. (2008). Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosystems, 11(4), 385-398.
11. Durhman, A. K., Rowe, D. B., & Rugh, C. L. (2007). Effect of substrate depth on initial growth, coverage, and survival of 25 succulent green roof plant taxa. HortScience, 42(3), 588-595.
12. Dvorak, B., & Volder, A. (2010). Green roof vegetation for North American ecoregions: a literature review. Landscape and urban planning, 96(4), 197-213.
13. Emilsson, T. (2008). Vegetation development on extensive vegetated green roofs: influence of substrate composition, establishment method and species mix. Ecological Engineering, 33(3), 265-277.
14. Getter, K. L., & Rowe, D. B. (2009). Substrate depth influences Sedum plant community on a green roof. HortScience, 44(2), 401-407.

15. Hashemi, S. S. G., Mahmud, H. B., & Ashraf, M. A. (2015). Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: a review. Renewable and Sustainable Energy Reviews, 52, 669-679.

16. Hathaway, A. M., Hunt, W. F., & Jennings, G. D. (2008). A field study of green roof hydrologic and water quality performance. Transactions of the ASABE, 51(1), 37-44.
17. Hutchinson, D., Abrams, P., Retzlaff, R., & Liptan, T. (2003). Stormwater monitoring two ecoroofs in Portland, Oregon, USA. In Proc. Greening Rooftops for Sustainable Communities: Chicago 2003: May 29-30, 2003; Chicago, Illinois.
18. Köhler, M., Schmidt, M., Wilhelm Grimme, F., Laar, M., Lúcia de Assunção Paiva, V., & Tavares, S. (2002). Green roofs in temperate climates and in the hot-humid tropics-far beyond the aesthetics. Environmental management and health, 13(4), 382-391.
19. Liu, K., & Baskaran, B. (2003). Thermal performance of green roofs through field evaluation. In Proceedings for the First North American Green Roof Infrastructure Conference, Awards and Trade Show (pp. 1-10).
20. Lundholm, J., MacIvor, J. S., MacDougall, Z., & Ranalli, M. (2010). Plant species and functional group combinations affect green roof ecosystem functions. Plos One, 5(3), e9677.
21. Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century?. Landscape and urban planning, 77(3), 217-226.
22. Monterusso, M. A., Rowe, D. B., Rugh, C. L., & Russell, D. K. (2002). Runoff water quantity and quality from green roof systems. In XXVI International Horticultural Congress: Expanding Roles for Horticulture in Improving Human Well-Being and Life Quality 639 (pp. 369-376).
23. Moran, A., Hunt, B., Smith, J. (2005). Hydrologic and Water Quality Performance from Greenroofs in Goldsboro and Raleigh, North Carolina. The Third Annual Greening Rooftops for sustainable Communities Conference, Awards and Trade Show. Washington, D.C.
24. Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3), 356-363.
25. Roehr, D., & Kong, Y. (2010). Runoff reduction effects of green roofs in Vancouver, BC, Kelowna, BC, and Shanghai, PR China. Canadian Water Resources Journal, 35(1), 53-68.
26. Rowe, D.B., Rugh, C., VanWoert, N., Monterusso, M., and Russell, D.(2003). Green Roof Slope, Substrate Depth, and Vegetation Influence Runoff. In Proc. Greening Rooftops for Sustainable Communities: Chicago 2003: May 29-30, 2003; Chicago, Illinois.
27. Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environmental Pollution, 159(8), 2100-2110.
28. Spolek, G. (2008). Performance monitoring of three ecoroofs in Portland, Oregon. Urban Ecosystems, 11(4), 349-359.
29. Takakura, T., Kitade, S., & Goto, E. (2000). Cooling effect of greenery cover over a building. Energy and Buildings, 31(1), 1-6.
30. Teemusk, A., & Mander, Ü. (2007). Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events. Ecological engineering, 30(3), 271-277.
31. Teemusk, A. (2009). Temperature and water regime, and runoff water quality of planted roofs (Doctoral dissertation).
32. Tsang, S. W., & Jim, C. Y. (2011). Theoretical evaluation of thermal and energy performance of tropical green roofs. Energy, 36(5), 3590-3598.
33. Vijayaraghavan, K., Joshi, U. M., & Balasubramanian, R. (2012). A field study to evaluate runoff quality from green roofs. water research, 46(4), 1337-1345.
34. Wong, N. H., Cheong, D. W., Yan, H., Soh, J., Ong, C. L., & Sia, A. (2003). The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy and buildings, 35(4), 353-364.
35. 蕭諭勵 (2012),“薄層型綠屋頂逕流水質監測與分析”,中華民國華岡農科學報,第二十九期:15-34
36. 內政部建築研究所 (2015),“屋頂綠化技術手冊”
37. 內政部營建署 (2010),“生態城市綠建築推動方案(修正案)核定本”
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信