§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2607201500254600
DOI 10.6846/TKU.2015.00908
論文名稱(中文) 小分子有機光伏打電池材料偶極性茚並茚衍生物的合成與性質檢測
論文名稱(英文) The synthesis and investigation of novel dipolar dihydroindenoindene derivatives for small molecular organic photovoltaic solar cell
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 蕭凱倫
研究生(英文) Kai-Lun Hsiao
學號 699180096
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-24
論文頁數 83頁
口試委員 指導教授 - 謝仁傑(jchsieh@mail.tku.edu.tw)
委員 - 謝仁傑(jchsieh@mail.tku.edu.tw)
委員 - 陳志欣(chc@mail.tku.edu.tw)
委員 - 莊士卿(jscchuang@gmail.com)
關鍵字(中) 太陽能電池
有機光伏打電池
茚並茚
關鍵字(英) Solar cell
OPV
TDI
第三語言關鍵字
學科別分類
中文摘要
有機光伏打電池是利用化學合成的有機材料塗佈於元件上,厚度只需幾百奈米即可,藉由調整其能隙,使太陽能電池能對太陽光有更廣的吸收範圍,期待它有更高的吸光係數,以及更好的光電轉換效率。
  此論文主要是合成出有機光伏打電池之主動層,在製程上欲以 5,5,10,10-tetraphenyl-5,10-dihydro-indeno[2,1-a]-indene ( TDI ) 作為基本模板,組合 arylamine (電子供體片段, D )和 aryl-2-methylene-malononitrile (電子受體片段, A ) 形成 D-TDI-A 的吸光分子,先以理論計算推算適合的電子供體片段和電子受體片段,再依據理論計算結果,合成光學特性較佳的化合物,經由光學儀器分析,比較和理論計算結果的誤差,得到Da-TDI-Aa 為吸光範圍最寬的化合物。
英文摘要
Organic photovoltaic cells (OPV) utilizes organic material- which is chemically synthesized- to coat on the component: only a few hundred nanometers is required. By adjusting its energy gap, the solar cell could have a broader absorption range to the sunlight, which hypothetically would to achieve a higher absorption coefficient, and therefore better photoelectric conversion efficiency. 
This thesis discusses the procedure for synthesizing the active layer of OPV. In the procedure, the 5,5,10,10-tetraphenyl-5,10-dihydro-indeno [2,1-a] -indene (TDI) is used as the basic template. The TDI is then combine with arylamine (electron donor fragment, D) and aryl-2-methyl-enemalononitrile (electron acceptor fragment, A) to form a D-TDI-A light-absorbing molecule. Calculation is then performed to determine the theoretically suitable electron donor fragments and electron acceptor fragments. Then based on the calculation result to synthesize the compound, which has better optical properties. The theoretical results and the experimental results are then compared with each other through analysis by optical instruments. The analysis result suggested that the Da-TDI-Aa is the compounds which has the widest range of absorbance.
第三語言摘要
論文目次
第一章	緒論
1.1前言 1
1.2有機太陽能電池 3
1.3 有機光伏打電池 ( OPV ) 元件、裝置 5
1.3.1有機光伏打電池原理 5
1.3.2吸光活性層(Active Layer) 8 
1.3.3界面層(Interfacial Layer) 10
1.3.4 PEDOT:PSS 10
1.3.5銦錫氧化物(ITO)層 11
1.3.6 電極 11
1.4 小型有機光伏打電池元件 ( SM-OPV devices ) 11
第二章	 偶極茚並茚衍生物的合成與性質測試
2.1文獻探討 13
2.2 分子設計 15
2.3 分子合成及光學分析 18
2.4討論 23
第三章	合成實驗
3.1 實驗儀器 25
3.2 合成步驟 27
3.3 溶劑純化除水、除氧 42
3.3.1 除水 42
3.3.2 除氧 43
3.4 實驗藥品 44
參考文獻 46
附錄
一、	核磁共振光譜圖 54
1化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 54
2化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 55
4化合物之1H NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 56
4化合物之13C NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 57
5化合物之1H NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 58
5化合物之13C NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 59
8化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 60
9化合物之1H NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 61
9化合物之13C NMR ( 600MHz, CDCl3 ) 核磁共振光譜圖 62
11a化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 63
11b化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 64
12a化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 65
12b化合物之1H NMR ( 300MHz, CDCl3 ) 核磁共振光譜圖 66
二、MS 圖譜 67
8化合物之MS質譜 67
8化合物之HR-MS高解析質譜 68
9化合物之MS質譜 69
9化合物之HR-MS高解析質譜 70
11a化合物之MS質譜 71
11a化合物之HR-MS高解析質譜 72
11b化合物之MS質譜 73
11b化合物之HR-MS高解析質譜 74
12a化合物之MS質譜 75
12a化合物之HR-MS高解析質譜 76
12b化合物之MS質譜 77
12b化合物之HR-MS高解析質譜 78
三、UV-VIS 光譜 79
8化合物之UV-VIS光譜 79
12a化合物之UV-VIS光譜 80
12b化合物之UV-VIS光譜 81
四、CV 光譜 82
12a化合物之CV光譜 82
12b化合物之CV光譜 83
圖目錄
圖1-1、太陽能電池的分類 4
圖1-2、釕類錯合物(a) N719 (b) BlackDye 5
圖1-3、有機光伏打電池元件電子激發 6
圖1-4、有機光伏打電池元件電子、電洞形成 6
圖1-5、有機光伏打電池元件電子、電洞分離 7
圖1-6、電子、電洞分別往不同方向傳輸 7
圖1-7、有機光伏打電池元件裝置結構 8
圖 1-8、PCBM的分子結構 9
圖1-9、吸光活性層(Active Layer)混合方式 : (a) Bilayer  (b) Bulk Heterojunction 10
圖1-10、PEDOT:PSS的分子結構 11
圖1-11、CuPc -酞菁分子類 12
圖2-1、吳忠幟教授所發表的染料敏化太陽能電池元系件之分子結構 13
圖2-2、N719 之分子結構 14
圖2-3、 Da-TDI-Aa、Db-TDI-Ab、Db-TDI-Ad  UV_Vis 光譜疊圖 21
流程圖目錄
流程圖2-1、TDI分子的合成策略 18
流程圖2-2、分子Da-TDI-Aa 的合成策略 19
流程圖2-3、分子Db-TDI-Ab、Db-TDI-Ad 的合成策略 20
流程圖3-1、1化合物之合成 27
流程圖3-2、2化合物之合成 28
流程圖3-3、3化合物之合成 29
流程圖3-4、4化合物之合成 30
流程圖3-5、5化合物之合成 31
流程圖3-6、6化合物之合成 32
流程圖3-7、7化合物之合成 33
流程圖3-8、8化合物之合成 34
流程圖3-9、9化合物之合成 35
流程圖3-10、10化合物之合成 36
流程圖3-11、11化合物之合成 37
流程圖3-12、12化合物之合成 38
流程圖3-13、13化合物之合成 39
流程圖3-14、14化合物之合成 40
流程圖3-15、15化合物之合成 41
表目錄
表2-1、D-TDI-A 組合表 15~16
表2-2、最大吸收波長 (λMAX ) 及200~700 nm 吸收光範圍積分 22
表2-3、D-TDI-A元件在二氯甲烷的吸收波長以方法TD-BHandHLYP/6-31G(d)計算 23
參考文獻
參考文獻
1. 曾志超, 理性討論校四爭議( 2013 )
2. 郭泰麟, 國立中山大學光電工程學系碩士論文 ( 2010 )
3. Y. Lin, Y.F. Li, X.W. Zhan, Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev., 2012, (41), 4245-4272.
4. S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev., 2007, (107), 1324-1338.
5. B. Walker, C. Kim, T.Q. Nguyen, Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater., 2011, (23), 470-482.
6. B. Walker, A.B. Tamayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells, Adv. Funct. Mater., 2009, (19), 3063-3069.
7. J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, Y. Chen, A planar small molecule with dithienosilole core for high efficiency solution-processed organic photovoltaic cells, Chem. Mater., 2011, (23), 4666-4668.
8. L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, C.-W. Chen, Y.-H. Liu, K.-T. Wong, A low-energy-gap organic dyes for high performance small-molecule organic solar cells. J. Am. Chem. Soc., 2011, (133), 15822-15825. 
9. Y. Sun, G.C. Welch, W.L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Solution-processed small-molecule solar cells with 6.7% efficiency, Nat. Mater., 2012, (11), 44-48.
10. A. Mishra, P. Bäuerle, Small molecule organic semiconductors on the move: promises for future solar energy technology, Angew. Chem. Int. Ed., 2012, (51), 2020-2067.
11. J.A. Mikroyannidis, S.S. Sharma, Y.K. Vijay, G.D. Sharma, Novel low band gap small molecule and phenylenevinylene copolymer with cyanovinylene 4-nitrophenyl segments: synthesis and application for efficient bulk heterojunction solar cells Appl. Mater. Interfaces., 2010, (2), 270-278.
12. S. Loser, C.J. Bruns, H. Miyauchi, R.P. Ortiz, A. Facchetti, S.I. Stupp, T.J. Marks, A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. J. Am. Chem. Soc., 2011, (133), 8142-8145.
13. S.C. Price, A.C. Stuart, L. Yang, H. Zhou, W. You, Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc., 2011, (133), 4625-4631.
14. Michael D. McGehee, and Mark A. Topinka. Solar cells: Pictures from the blended zone. Nature Materials., 2006, 5 (9), 675–676.
15. Nelson J. Current Opinion in Solid State and Materials Science. Organic photovoltaic films., 2002, 6, 87–95.
16. H. Hoppe and N. S. Sariciftci. Organic solar cells: An overview. J. Mater. Res., 2004, 19 (7), 1924–1945.
17. M.C. Scharber, and N.S. Sariciftci. Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science., 2013, 38 (12), 1929–1940.
18. Nelson J. Organic photovoltaic films. Current Opinion in Solid State and Materials Science., 2002, 6, 87–95.
19. Kearns D., Calvin M. Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys., 1985, 29 (4), 950–951.
20. Askat E. Jailaubekov, Adam P. Willard, John R. Tritsch, Wai-Lun Chan, Na Sai, Raluca Gearba, Loren G. Kaake, Kenrick J. Williams, Kevin Leung, Peter J. Rossky and X-Y. Zhu. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nature Materials., 2013, 12, 66–73
21. Xin Li, Yan Chen, Jie Sang, Bao-Xiu Mi, Dan-Hua Mu, Zhi-Gang Li, Hui Zhang, Zhi-Qiang Gao, Wei Huang. CuPc/C60 bulk heterojunction photovoltaic cells with evidence of phase segregation. Organic Electronics., 2013, 14, 250–254.
22. H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem., 2006, (16), 45-61.
23. M. Helgesen, R. Sndergaard, F.C. Krebs, Advanced materials and processes for polymer solar cell devices. J. Mater. Chem., 2010,  (20), 36-60.
24. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics., 2009, (3), 297-302.
25. H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Ang. Chem. Int. Ed., 2011, (50), 2995-2998.
26. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heege, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater., 2005, (15),  1617-1622.
27. C. Yang, J.K. Lee, A.J. Heeger, F. Wudl, Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem., 2009, (19), 5416-5423.
28. K. Lee, J.Y. Kim, S.H. Park, S.H. Kim, S. Cho, A.J. Heege, Air-stable polymer electronic devices. Adv. Mater., 2007, (19), 2445-2449.
29. J.K. Lee, N.E. Coates, S. Cho, N.S. Cho, D. Moses, G.C. Bazan, K. Lee, A.J. Heeger, The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett., 2008, (243308), 1-3.
30. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater., 2007, (19), 497-500.
31. J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moo, J.Y. Kim, K. Lee, G.C. Bazan, A.J. Heeger, Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc., 2008, (130), 3619-3623.
32. Z.C. He, C.M. Zhong, S.J. Su, M. Xu, H.B. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics., 2012, (6), 593-597.
33. D. Wang, W. Ding, Z. Geng, L. Wang, Y. Geng, Z. Su, H. Yu, Rational design and characterization of high-efficiency planar A-π-D-π-A type electron donors in small molecule organic solar cells: a quantum chemical approach, Mater. Chem. And Phys., 2014, (145), 387-396.
34. Li-Yen Lin, Chih-Hung Tsai, Ken-Tsung Wong, Tsung-Wei Huang, Lun Hsieh, Su-Hao Liu, Hao-Wu Lin, Chung-Chih Wu, Shu-Hua Chou, Shinn-Horng Chen, and An-I Tsai. Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells. J. Org. Chem., 2010, 75, 4778-4785.
35. Y. Zhang, H. Tan, M. Xiao, X. Bao, Q. Tao, Y. Wang, Y. Liu, R. Yang, W. Zhu, D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron., 2014, (15), 1173-1183.
36. (a) L. Zhang, K. Pei, H. Zhao, S. Wu, Y. Wang, J. Gao, Rational design of novel A-A-D-A-A type electron donors for small molecule organic solar cells. Chem. Phys. Lett., 2012, (543), 199-204. (b) C.Y. Tseng, F. Taufany, S. Nachimuthu, J.-C. Jiang, Design strategies of metal free-organic sensitizers for dye sensitized solar cells: Role of donor and acceptor monomers. Org. Electron., 2014, (15), 1205-1214.
37. S. Paek, J.K. Lee, J. Ko, Synthesis and photovoltaic characteristics of push–pull organic semiconductors containing an electron-rich dithienosilole bridge for solution-processed small-molecule organic solar cells. Sol. Energy Mater. Sol. Cells., 2014, (120), 209-217.
38. G.D. Sharma, J.A. Mikroyannidis, S.S. Sharma, K.R.J. Thomas, Bulk heterojunction organic photovoltaic devices based on small molecules featuring pyrrole and carbazole and 2-(4-nitrophenyl)acrylonitrile acceptor segments as donor and fullerene derivatives as acceptor. Dyes Pigments., 2012, (94), 320-329.
39. L. Sun, F.-Q. Bai, Z.-X. Zhao, H.-X. Zhang, Design of new benzothiadiazole-based linear and star molecules with different functional groups as solar cells materials: A theoretical approach. Sol. Energy Mater. Sol. Cells., 2011, (95), 1800-1810.
40. D. Wang, X. Zhang, W. Ding, X. Zhao, Z. Geng, Density functional theory design and characterization of D–A–A type electron donors with narrow band gap for small-molecule organic solar cells. Comput. Theor. Chem., 2014, (1029), 68-78.
41. Yi Wei, Wei-Jyun Wang, Yu-Ting Huang, Bo-Cheng Wang, Wen-Hao Chen, Sang-HsiuWua, Chiu-Hui Heb, Blue Fluorescent Dihydro-indenoindene Derivatives with Unusual Low Oxidation Potentials as Multifunctional OLED Materials. J. Mater. C., 2014, 2, 1779-1782.
42. X. Zhu, C. Mitsui, H. Tsuji and E. Nakamura. Modular Synthesis of 1H-Indenes, Dihydro-s-Indacene, and Diindenoindacene—a Carbon-Bridged p-Phenylenevinylene Congener. J. Am. Chem. Soc., 2009, 131, 13596-13597. 
43. X. Zhu, H. Tsuji, K. Nakabayashi, S. Ohkoshi and E. Nakamura. Air- and Heat-Stable Planar Tri-p-quinodimethane with Distinct Biradical Characteristics. J. Am. Chem. Soc., 2011, 133, 16342-16345. 
44. A. Leliège, P. Blanchard, T. Rousseau, J. Roncali, Triphenylamine/ tetracyanobutadiene-based D-A-D π-conjugated systems as molecular donors for organic solar cells. Org. Lett., 2011, (13), 3098-3101.
45. Q.Q. Shi, P. Cheng, Y.F. Li, X.W. Zhan, A solution processable D-A-D molecule based on thiazolothiazole for high performance organic solar cells. Adv. Energy Mater., 2012, (2), 63-67.
46. W.W. Li, C. Du, F.H. Li, Y. Zhou, M. Fahlman, Z.S. Bo, F.L. Zhang, Benzothiadiazole-based linear and star molecules: design, synthesis, and their application in bulk heterojunction organic solar cells. Chem. Mater., 2009, (21), 5327-5334.
47. L.Y. Lin, Y.H. Chen, Z.Y. Huang, H.W. Lin, S.H. Chou, F. Lin, C.W. Chen, Y.H. Liu, K.T. Wong, A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J. Am. Chem. Soc., 2011, (133), 15822-15825.
48. J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, G.D. Sharma, Low band-gap phenylenevinylene and fluorenevinylene small molecules containing triphenylamine segments: Synthesis and application in bulk heterojunction solar cells. Org. Electron., 2011, (12), 774-784.
49. O.P. Lee, A.T. Yiu, P.M. Beaujuge, C.H. Woo, T.W. Holcombe, J.E. Millstone, J.D. Douglas, M.S. Chen, J.M.J. Fréchet, Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv. Mater., 2011, (23) 5359-5363.
50. Chin-Kuen Tai, Chun-An Hsieh, Kai-Lun Hsiao, Bo-Cheng Wang, Yi Wei: Novel dipolar 5,5,10,10-tetraphenyl-5,10-dihydroindeno[2,1-a]-
indene derivatives for SM-OPV: A combined theoretical and experimental study. Organic Electronics., 2015, 16, 54–70
51.Paola Mestichelli, Matthew J. Scott, Warren R. J. D. Galloway, Jamie Selwyn, Jeremy S. Parker, and David R. Spring, Concise Copper-Catalyzed Synthesis of Tricyclic Biaryl Ether-Linked Aza-
Heterocyclic Ring Systems. Org. Lett., 2013, 15 (21), 5448–5451.
52. Lauren G. Mercier, Warren E. Piers, and Masood Parvez, Benzo and Naphthoborepins: Blue Emitting Boron Analogs of Higher Acenes. Angew Chem Int Ed Engl., 2009, 48(33), 6108-11. 
53. Xiaozhang Zhu, Hayato Tsuji, Aswani Yella, Anne-Sophie Chauvin, Michael Grätzel and Eiichi Nakamura : New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene. Chem. Commun., 2013, 49, 582-584.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信