淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2607201313133000
中文論文名稱 仿生蜂鳥微型飛行器機構運動分析
英文論文名稱 Kinematic analysis of a hummingbird-like micro-aerial-vehicle mechanism
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 王勝弘
研究生英文姓名 Sheng-Hong Wang
學號 698370748
學位類別 碩士
語文別 中文
口試日期 2013-07-17
論文頁數 53頁
口試委員 指導教授-劉昭華
委員-楊龍杰
委員-陳正光
中文關鍵字 微飛行器  簡化機構  瓦特四連桿直線機構  傳動角 
英文關鍵字 Micro-aerial-vehicle  Watt straight four-bar linkage mechanism  Transmission angle 
學科別分類 學科別應用科學機械工程
中文摘要 本論文針對特定之微型飛行器從事機構分析。此微型飛行器是由10個桿件,13個接頭所組成之連桿機構,機構自由度為1。機構之主要部分包含史蒂芬生第三型六連桿機構,此六連桿機構又包含瓦特四連桿直線機構。本文將此微型飛行器機構簡化後進行位置分析,簡化機構主要是由三個滑件曲柄機構組成,而滑件可以空心槽內之插銷代替。經由分析的結果找出簡化機構輸入桿運動範圍,輸出桿的角度範圍、輸出桿極限角度。並進行傳動角效率分析、與各個桿件的速度與加速度分析;接著,經由傳動角效率分析找出能夠產生較佳傳動角的輸入桿運動範圍。本文亦探討原機構中瓦特四連桿直線機構之近似直線的長度。
英文摘要 In this thesis an analysis is performed on a specific MAV, which is a linkage with 10 links and 13 joints, and has one degree of freedom. The main part of the mechanism is a Stevenson six-bar mechanism of type III that contains a watts four-bar straight line mechanism. To obtain analytical solutions, we simplify this MAV mechanism to a mechanism consisting of three slider-crank mechanisms. Analytical results include position of each link, ranges of motion of both the input and the output links, the extreme values of output angle, transmission angle, velocities and accelerations. The input ranges that may result in ideal transmission angle are also found. The straight line length produced by a Watt straight four-bar linkage is also discussed.
論文目次 目錄 III
圖目錄 V
第1章緒論 1
1-1研究背景1
1-2研究動機及文獻回顧2
1-3微飛行器機構3
1-3-1 金探子微型飛行器機構之結構3
1-3-2 仿生蜂鳥微型飛行器機構之結構4
第2章機構分析5
2-1仿生蜂鳥機構分析5
2-1-1 簡化機構位置分析5
2-1-2 瓦特四連桿直線機構位置分析8
2-2簡化機構效率分析9
2-3瓦特四連桿直線機構之近似直線長度11
2-4簡化機構速度與加速度分析11
第3章結果與討論16
3-1空心槽中插銷的範圍Cy16
3-2輸出桿的極限位置19
3-3拍翼角度的範圍21
3-4能夠產生較佳傳動角之插銷運動範圍22
3-5簡化機構極限位置的加速度分析24
第4章結論及建議設計程序26
參考文獻 29
圖目錄
圖一金探子微型飛行器拍翼機構31
圖二仿生蜂鳥機構32
圖三史蒂芬生第三型六連桿機構33
圖四瓦特四連桿直線機構34
圖五簡化機構35
圖六簡化機構第一部分36
圖七簡化機構第二部分37
圖八簡化機構第三部分38
圖九簡化機構第二部分第二組解39
圖十簡化機構第二部分第一組解40
圖十一瓦特四連桿直線機構41
圖十二瓦特四連桿直線機構42
圖十三簡化機構傳動角μ43
圖十四最佳 長度44
圖十五情況1時空心槽中插銷的容許範圍45
圖十六情況2時空心槽中插銷的容許範圍46
圖十七情況3時空心槽中插銷的容許範圍47
圖十八情況1時拍翼角度的範圍48
圖十九情況2時拍翼角度的範圍49
圖二十拍翼角度第二組的解極值50
圖二十一拍翼角度第一組解的極值51
圖二十二有較佳傳動角μ的空心槽中插銷區間 52
圖二十三實際尺寸長度53

參考文獻 參考文獻
[1]Steven, A., “Palm-size Spy Plane,” American Society of
Mechanical Engineers, Vol. 120, No. 2, 1988, pp. 74-78.
[2]廖俊瑋,“翼展10公分之拍翼式微飛行器研製”,淡江大學,
機械與機電工程學系碩士論文,2009。
[3]Galinski, C., and Zbikowski, R., “Insect-like Flapping Wing Mechanism Based on a Double Spherical Scotch Yoke”, J. R. Soc. Interface, Vol. 2, No. 3, 2005, pp. 223–235.
[4]McIntosh, S., Agrawal, S., and Khan, Z., “Design of a
Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle”, IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 2, 2006, pp. 145-153.
[5]Galinski, C., and Zbikowski, R., “Materials Challenges in the Design of an Insect-like Flapping Wing Mechanism Based on a Four-bar Linkage”, Materials and Design, Vol. 28, 2007, pp. 783–796.
[6]Lung-Jieh Yang, “Biomimetic Micro-Aerial-Vehicle with
Figure-Eight Flapping Trajectory”, US Patent 8033499B2, Oct. 2011.
[7]Zhang, T., Zhou, C., Zhang, x., and Wang, C., “Design,
Analysis, Optimization And Fabrication of A Flapping Wing MAV”, Proceedings of 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, August 19-22, 2011, Jilin, China, pp. 2241-2244.
[8]Zbikowski, R.,Galinski, C., and Pedersen, C. “Four-Bar Linkage Mechanism for insectlike Flapping Wings in Hover: concept and an outline of its realization”, Journal of Mechanical Design, Transactions of the ASME, July, Vol. 127, No. 4, 2005, pp. 817-824.
[9]Liu, L., Fang, Z., and He, Z., “Optimization Design of Flapping Mechanism and Wings for Flapping-Wing MAVs”, Xiong, C. et al (editors), Intelligent Robotics and Applications-Proceedings The 2008 International Conference on Intelligent Robotics and Applications, ICIRA 2008, Wuhan, China, October 15-17, Part I, Springer, 2008, pp. 245-255.
[10]Keennon, T. Klingbiel, K., and Won H., “Flapping Wing
Propulsion and Control Development for the Nano Hummingbird Micro Air Vehicle”, AeroVironment Inc., Simi Valley, CA, 93065.
[11]Park, J., Yang E., Zhang C., and Agrawal, S., “Kinematic Design of an Asymmetric In-phase Flapping Mechanism for MACs” 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA, May 14-18, 2012.
[12]Dijksman, E., A., “Six-Bar Cognates of a Stephenson
Mechanism”, Jnl. Mechanisms Vol. 6, 1970, pp. 31-57.
[13]Watanabe, K., and Funabashi, H., “Kinematic Analysis of
Stephenson Six-Link Mechanisms”, Buletin of JSME, Vol. 27, No. 234, 1984, pp. 2863-2870.
[14]Norton, R.L., “Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines”. McGraw-Hill, 2008.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信