淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2607201300262400
中文論文名稱 以偏壓輔助成長鑽石膜改善場發射特性之研究
英文論文名稱 Bias-enhanced growth processes for improving the electron field emission properties of diamond films
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 101
學期 2
出版年 102
研究生中文姓名 陳韋仁
研究生英文姓名 Wei-Ren Chen
學號 695210533
學位類別 碩士
語文別 中文
口試日期 2013-06-27
論文頁數 109頁
口試委員 指導教授-林諭男
委員-黃柏仁
委員-宋大崙
中文關鍵字 偏壓  場發射  鑽石膜 
英文關鍵字 bias  diamondfilm 
學科別分類 學科別自然科學物理
中文摘要 本研究在三種氣體條件下,以負偏壓成長(Bias Enhanced Growth, BEG)製程,在施加偏壓成核與成長過程中,會利用光放射光譜(Optic Emission Spectroscopy, OES)與偏壓電流(Bias Current)監測製程,並利用拉曼(Raman)光譜、SEM 分析表面形貌、本研究有三種不同實驗條件,(1)甲烷/氫氣電漿:固定成長時間30分鐘、微波功率、甲烷/氫氣比例,改變偏壓值,腔室壓力,希望可以在氫氣電漿下控制其鑽石晶粒尺寸大小,使其擁有UNCD的鑽石晶粒大小,以期改善其場發射特性。(2)甲烷/氫氣/氬氣電漿:我們在第一部分的實驗中,找一組有較佳的場發射特性的條件,在甲烷/氫氣電漿中加入不同比例氬氣,觀察其結果變化。(3)甲烷/氬氣電漿:第三部份我們嘗試在一般成長UNCD的條件下,用偏壓輔助成長鑽石膜,觀察場發射特性變化。由穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)的觀察發現電子場發射特性變佳的主要因素是在 U-BEG過程中成長鑽石薄膜會沿著晶界處產生石墨相。
英文摘要 In this thesis, we used U-BEG(ultrasonication-bias enhanced growth) in three different Experimental conditions. In applying a bias nucleation and growth process will profit OES (optic Emission Spectroscopy) and bias current monitoring process and utilize Raman spectroscopy, SEM(scanning electron microscope) analysis of surface morphology, electronic EFE (field emission) measurements feature diamond films. Investigate how changes in field emission property.
論文目次 目錄
致謝…………………………………………………………………I
中文摘要…………………………………………………………II
英文摘要…………………………………………………………III
目錄………………………………………………………………IV
圖目錄………………………………………………………………V
表目錄……………………………………………………………VI
第一章序論 ..............................1
1.1 研究動機 ..............................1
1.2 鑽石的基本特性 ......................1
1.2.1 硬度(Hardness): ......................1
1.2.2 熱傳導係數(Thermal conductivity):......2
1.2.3 化學反應性(Chemical reactivity): ......2
1.2.4 密度(Density): ......................2
1.2.5 光學性質(Optical properties)﹕ ......2
1.2.6 電子特性﹕ ......................2
1.2.7 鑽石的負電子親和力特性: ..............2
1.3 微米及超奈米晶鑽石薄膜之合成方法與理論....2
1.3.1 合成鑽石薄膜之方法 ..............2
1.3.2 鑽石薄膜成核相關理論 ..............3
1.4 鑽石薄膜在場發射特性上之應用 ......8
1.5 微米及超奈米晶鑽石薄膜之應用 ......9
第二章 實驗方法 .............................25
2.1 薄膜製備 .............................25
2.1.1 實驗設備與方法 .....................25
2.1.1.1實驗設備 .............................25
2.2 薄膜物性量測 .....................28
2.2.1 拉曼光譜 .............................29
2.2.2 掃描式電子顯微鏡(圖 2.5) .............30
2.2.3 電子場發射 .....................31
2.2.4 穿透式電子顯微鏡(圖 2.8) .............35
第三章 結果與討論 .....................48
3.1甲烷/氫氣電漿成長鑽石膜 .............48
3.1.1掃描式電子顯微結構分析 .............49
3.1.2 沉積速率分析 .....................49
3.1.3 拉曼光譜分析 .....................49
3.1.4 電子場發射分析 .....................49
3.1.5 偏壓電流分析 .....................50
3.1.6 小結 .............................50
3.2在氫氣電漿中加入氬氣取代部分氫氣成長鑽石膜 ...50
3.2.1掃描式電子顯微結構分析 .............51
3.2.2 沉積速率分析 .....................51
3.2.3 拉曼光譜分析 .....................51
3.2.4 電子場發射分析 .....................51
3.2.5 偏壓電流分析 .....................51
3.2.6 小結 .............................51
3.3 甲烷/氬氣電漿中加偏壓輔助成長鑽石膜 .....52
3.3.1掃描式電子顯微結構分析 .............52
3.3.2 沉積速率分析 .....................52
3.3.3 拉曼光譜分析 .....................52
3.3.4 電子場發射分析 .....................53
3.3.5 偏壓電流分析 .....................53
3.3.6小結 .............................53
3.4實驗結果比較 .............................53
3.4.1掃描式電子顯微結構分析 .............54
3.4.2沉積速率 .............................54
3.4.3 拉曼光譜分析 .....................54
3.4.4 電子場發射分析 .....................54
3.4.5 TEM 穿透式電子顯微鏡分析 .............54
第四章 結論與未來展望 .....................98
參考文獻 ............................100
圖目錄
圖 1-1鑽石的結構[15] .....................14
圖 1-2石墨的結構[16] .....................14
圖 1-3微米晶至超奈米晶鑽石薄膜表面型態......15
圖 1-4 HRTEM 分析超奈米晶鑽石晶粒及晶界[15].16
圖 1-5超奈米晶鑽石晶粒間距及繞射圖[16] .....16
圖 1-6同波長的超奈米晶鑽石膜拉圖曼光譜[19]..17
圖 1-7微波電漿 CVD 示意圖[21] .............17
圖 1-8 HRTEM 分析超奈米晶鑽石晶粒及晶界[15].18
圖 1-9微波電漿放電系統示意圖[23] .....18
圖 1-10射頻電漿放電系統示意圖[24] .....19
圖 1-11電子迴旋共振微波放電示意圖[25] .....19
圖 1-12鑽石之椅狀堆積構造[26] .............20
圖 1-13石墨及鑽石的活化能相對圖[27] .....20
圖 1-14薄膜與基材之早期成核方式 .....21
圖 1-15與基材不反應者之孕核、成長 .....21
圖 1-16偏壓輔助孕核法的反應機制[38] .....22
圖 1-17偏壓輔助成核示意圖[41] .............23
圖 1-18超音波振盪法及偏壓輔助孕核法成長鑽石薄膜之 SEM 圖[47] .....................................23
圖 1-19分別運用奈米鑽石粉(ND)和奈米鑽石粉+鈦粉(ND + Ti)以超音波振盪法成長不同時間之 UNCD] .............24
圖 2-1 IPLAS, CYRANNUS® I 微波電漿化學汽相沉積系統示意圖: .....................................37
圖 2-2本研究所採用MPECVD:IPLAS, CYRANNUS® I ...38
圖 2-3偏壓系統示意圖 ...........................38
圖 2-4 (a)拉曼光譜(Raman spectra:RENISHAW®, INVIA)系統, ...........................................39
圖 2-5(a) 掃描式電子顯微結構系統(Scanning Electron ..41
圖 2-6電子場發射(EFE)特性量測系統 ..................42
圖 2-7金屬-真空能帶示意圖(a)未加電場,(b)外加高電場[51] ...........................................43
圖 2-8碳原子 sp3 結構圖(a)cubic Diamond(c-D),(b)new .45
圖 2-9穿透式電子顯微鏡(TEM:JEOL, JEM-2100F) .........46
圖 2-10穿透式電子顯微鏡(TEM:JEOL, JEM-2100F)的基本構造示意圖 [57] ............................................47
圖 3-1 1400 W 35 torr 甲烷9%之光放射光譜 ....56
圖 3-2 1400 W 40 torr 甲烷9%之光放射光譜 ....57
圖 3-3 1400 W 45 torr 甲烷9%之光放射光譜 ....57
圖 3-4 1400 W 50 torr 甲烷9%之光放射光譜 ....58
圖 3-5 1400W 35torr 甲烷 9%之偏壓電流 ............58
圖 3-6 1400W 40torr 甲烷 9%之偏壓電流 ............59
圖 3-7 1400W 45torr 甲烷 9%之偏壓電流 ............59
圖 3-8 1400W 50torr 甲烷 9%之偏壓電流 ............60
圖 3-9 1400W 35torr CH4 9% 之SEM圖 ............60
圖 3-10 1400W 40torr CH4 9% 之SEM圖 ............61
圖 3-11 1400W 45torr CH4 9% 之SEM圖 ............61
圖 3-12 1400W 50torr CH4 9% 之SEM圖 ............62
圖 3-13 1400W CH4 9% 偏壓-沉積速率圖 ............64
圖 3-14 1400W 35torr CH4 9% 鑽石膜沉積厚度之SEM圖 .64
圖 3-15 1400W 40torr CH4 9% 鑽石膜沉積厚度之SEM圖 .65
圖 3-16 1400W 45torr CH4 9% 鑽石膜沉積厚度之SEM圖 .65
圖 3-17 1400W 50torr CH4 9% 鑽石膜沉積厚度之SEM圖 .66
圖 3-18 1400 W 35torr 甲烷9%之拉曼光譜圖 .........66
圖 3-19 1400 W 40torr 甲烷9%之拉曼光譜圖 .........67
圖 3-20 1400 W 45torr 甲烷9%之拉曼光譜圖 .........67
圖 3-21 1400 W 50torr 甲烷9%之拉曼光譜圖 .........68
圖 3-22 1400W CH4 9% 負偏壓-場發射值圖 .................70
圖 3-23 1400W 35torr 之電子場發射J-E 曲線 .........70
圖 3-24 1400W 40torr 之電子場發射J-E 曲線 .........71
圖 3-25 1400W 45torr 之電子場發射J-E 曲線 .........71
圖 3-26 1400W 50torr 之電子場發射J-E 曲線 .........72
圖 3-27 不同氫氣/氬氣量之光放射光譜 .................73
圖 3-28 1400W 40torr不同氫氣/氬氣量之偏壓電流 .........74
圖 3-29 1400W 40torr 不同氫氣/氬氣量之SEM圖 .........74
圖 3-30 不同氫氣/氬氣比例之負偏壓-沉積速率 .........75
圖 3-31 不同氬氣量成長鑽石膜沉積厚度之SEM圖 .........76
圖 3-32 1400 W 40torr Ar 15%之拉曼光譜圖 .........76
圖 3-33 1400 W 40torr Ar 30%之拉曼光譜 .................77
圖 3-34 1400 W 40torr Ar 45%之拉曼光譜 .................77
圖 3-35 1400W 4torr Ar 15% 之電子場發射J-E 曲線 .78
圖 3-36 1400W 4torr Ar 30% 之電子場發射J-E 曲線 .79
圖 3-37 1400W 4torr Ar 45% 之電子場發射J-E 曲線 .79
圖 3-38 1000W 150 torr 2% CH4之光放射光譜 .........80
圖 3-39 1000W 150 torr 3% CH4之光放射光譜 .........81
圖 3-40 1000W 150 torr 4% CH4之光放射光譜 .........81
圖 3-41 1000W 1500torr CH4 2% 之偏壓電流 .........82
圖 3-42 1000W 1500torr CH4 3% 之偏壓電流 .........82
圖 3-43 1000W 1500torr CH4 4% 之偏壓電流 .........83
圖 3-44 1000W 150torr CH4 2% 之SEM圖 .................83
圖 3-45 1000W 150torr CH4 3% 之SEM圖 .................84
圖 3-46 1000W 150torr CH4 4% 之SEM圖 .................84
圖 3-47 1000 W 150torr CH4 2%之拉曼光譜 .........85
圖 3-48 1000 W 150torr CH4 3%之拉曼光譜 .........85
圖 3-49 1000 W 150torr CH4 4%之拉曼光譜 .........86
圖 3-50 甲烷濃度-負偏壓之沉積速率圖 .................87
圖 3-51 不同甲烷濃度-偏壓成長鑽石膜沉積厚度之SEM圖 .88
圖 3-52 甲烷濃度-起始電場之場發射值圖 .................89
圖 3-53 1000W 150torr CH4 2% 之電子場發射J-E 曲線 .90
圖 3-54 1000W 150torr CH4 3% 之電子場發射J-E 曲線 .90
圖 3-55 1000W 150torr CH4 4% 之電子場發射J-E 曲線 .91
圖 3-56偏壓 -200V不同實驗條件之SEM圖 .................92
圖 3-57偏壓 -200V不同實驗條件之Raman圖 .................92
圖 3-58偏壓-200V 不同氣體條件成長鑽石膜之TEM與HR明場像 .93
圖 3-59偏壓-200V 甲烷/氫氣成長鑽石膜之TEM HR .........93
圖 3-60偏壓-200V 甲烷/氫氣成長鑽石膜之TEM HR .........94
圖 3-61偏壓-200V 甲烷/氫氣成長鑽石膜之TEM HR .........94
圖 3-62偏壓-200V 甲烷/氫氣/氬氣成長鑽石膜之TEM HR .95
圖 3-63偏壓-200V 甲烷/氫氣/氬氣成長鑽石膜之TEM HR .95
圖 3-64偏壓-200V 甲烷/氫氣/氬氣成長鑽石膜之TEM HR .96
圖 3-65偏壓-200V 甲烷/氬氣成長鑽石膜之TEM HR .........96
圖 3-66偏壓-200V 甲烷/氬氣成長鑽石膜之TEM HR .........97
表目錄
表 1-1鑽石的基本特性………………………………………………12
表 1-2微米晶鑽石與超奈米晶鑽石的特性比較[14] ………………13
表 1-3超音波振盪法以及偏壓輔助孕核法其孕核特性之比較[47]
…………………………………………………………………13
表 2-1碳結構的各種拉曼峰值…………………………………40
表 2-2碳原子 sp3 結構 1/d 值與其出現之晶相對照表[58]…………44
表 3-1 1400W CH4 9%改變偏壓、氣壓之實驗參數…………………56
表 3-2 1400W CH4 9% 之實驗參數與鑽石膜沉積速率…………63
表 3-3 1400W CH4 9% 之實驗參數與電子場發射起始電場.........69
表 3-4 改變氬氣比例之實驗參數…………………………………73
表 3-5 改變氬氣比例之實驗參數與沉積速率……………………75
表 3-6 1400W 40torr改變氬氣量之實驗參數與電子場發射起始電場
………………………………………………………………………78
表 3-7 1000W 150torr 之實驗參數…………………………………80
表 3-8 1000W 150torr改變氣體比之實驗參數與沉積速率…………87
表 3-9 1000W 150torr改變氣體比之實驗參數與電子場發射起始電場
………………………………………………………………89


參考文獻 [1] A. Lavoisier , "Elements of Chemistry", Dover Publications(1772)
[2] Jasprit Singh, McGraw-Hill, "Physics of Semiconductors and Their Heterostructures ", New York (1993)
[3] S. M. Sze, John Wiley & Sons, "Physics of Semiconductor Devices,2nd Edition", New York (1981)
[4] W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S,Kerns,“Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B, 19(3), 936 (2001)
[5] Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang,David S. Grierson, and Bernd Kabius, “Enhanced nucleation,smoothness and conformality of ultrananocrystalline diamond(UNCD) ultrathin films via tungsten interlayers,” Chemical Physics Letters, 430 (4-6), 345-350 (2006).
[6] L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang,and Y. Chen, “Nanocrystalline diamond from carbon nanotubes,”Applied Physics Letters, 84 (15), 2901-2903 (2004).
[7] P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth,”Journal of Applied Physics, 100 024301-1-024301-9 (2006).
[8] L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, and R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates,” Diamond and Related Materials, 13 (9), 1731-1739 (2004).
[9] C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy,” Diamond and Related Materials, 17 (3), 306-312 (2008).
[10] J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond,” Applied Physics Letters, 81 (12),2235-2237 (2002).
[11] M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, and Gruen, D., “Low-temperature
magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films,” Diamond & Related Materials, 15 (4-8), 607-613 (2006).
[12] Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, and I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5),753-757(2008).
[13] P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I.N. Lin, “Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics, 103 043720-1-043720-7 (2008).
[14] W. Zhu, “Vacuum Microelectronics,” John Wiley & Sons (2001).
[15] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond filmsgrown by microwave Ar–CH4 plasma chemical vapor depositionwith or without added H2,” Journal of Applied Physics, 90 118-122(2001).
[16] Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477(2004).
[17] M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,”Applied Physics Letters, 91 031913-1- 031913-3 (2007).
[18] M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, and M. Koós,“Raman spectroscopy of UNCD grain boundaries,”Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
[19] A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B, 63 121405-1-121405-4 (2001).
[20] James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics, 93 5606-5612 (2003).
[21] Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films,” Journal of Applied Physics, 101 123924-1-123924-6 (2007).
[22] M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, and H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD,” Diamond & Related Materials, 18 927-930 (2009).
[23] S. J. Ray and G. M. Hieftje, “ Microwave plasma torch
-atmospheric-sampling glow discharge modulated tandem source
for the sequential acquisition of molecular fragmentation and atomic mass spectra ,” Analytica Chimica Acta, 445 (1), 35 (2001).
[24] A. T. Sowers, B. L. Ward, S. L. Englih, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films,” Journal of Applied Physics, 86 3973-3982 (1999).
[25] K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, and L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization,” Thin Solid Films, 332 (1-2), 34-39 (1998).
[26] Huimin Liu and David S. Dandy, “Diamond Chemical Vapor
Deposition Nucleation and Early Growth Stages,” Noyes
Publication, Park Ridge, New Jersey (1995).
[27] Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications,” Noyes Publications, Park Ridge, New Jersey (1992).
[28] J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett,“Plasma-surface interactions and processing of materials,” 28-31(1990).
[29] X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser,“Epitaxial diamond thin films on (001) silicon substrate,” Applied Physics Letters, 62 3438-3440 (1993).
[30] S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films,” Applied Physics Letters, 57 (25), 2646-2648 (1990).
[31] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki,“Synthesis and structural study of nano/micro diamond overlayer films,” Journal of Crystal Growth, 242 (3-4), 362-366 (2002).
[32] H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages,” Noyes (1995).
[33] Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates,” Journal of Applied Physics, 73(2), 711-715 (1993).
[34] D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth,” Applied Physics Letters, 54 (5), 416-417 (1989).
[35] N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate,” Journal of Materials Research, 9 (10), 2695 (1994).
[36] W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo,“Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition,” Diamond and Related Materials, 10 (3-7), 383-387 (2001).
[37] S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor
deposition,” Applied Physics Letters, 58 (10), 1036-1038 (1991).
[38] B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass,“ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy,” Physical Review B, 45 (19), 11067-11084 (1992).
[39] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon,” Journal of Applied Physics, 79 (8), 4388-4396 (1996).
[40] P. Reinke and P. Oelhafen, “Photoelectron spectroscopic
investigation of the bias-enhanced nucleation of polycrystalline diamond films,” Physical Review B, 56 (4), 2183-2190 (1997).
[41] R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M.
Hundhausen, and L. Ley, “Growth of diamond on silicon during
the bias pretreatment in chemical vapor deposition of
polycrystalline diamond films,” Journal of Applied Physics, 79 768-775 (1996).
[42] R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions,” Journal of Applied Physics, 83 531-539 (1998).
[43] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si,” Applied Physics Letters, 66 (24), 3287 (1995).
[44] S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond,” Applied Physics Letters, 66 (23), 3117-3119 (1995).
[45] L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100),” Journal of Applied Physics 76 (11), 7483-7486 (1994).
[46] S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step.” Journal of Applied Physics 84 (4), 1870-1880 (1998).
[47] Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, and I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature,” Diamond and Related Materials, 15 1779-1783 (2006).
[48] J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition,” Journal of Materials Science, 27 (23), 6324-6330 (1992).
[49] Serapinas, P. D. and Shalkauskas, Y. S.,“Homology and
concentration sensitivity in equilibrium excitation,” Zh. Prikl. Spektrosk. 251 496–501(Translation) (1976).
[50] Podder, N. K, Johnson, J. A. III Loch S D, and Pindzola M S,“Helium line intensity ratio in microwave-generated plasmas,” Physics of Plasmas, 11 (12), 5436-5443 (2004).
[51] 顏澤宇, “硼摻雜在偏壓下對鑽石膜沈積的影響,” 國立台灣師
範大學物理研究所碩士論文, 28-32 (2004).
[52] Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi
Sugino,“Behavior of electron emission from phosphorus-doped epitaxial diamond films,” Diamond and Related Materials, 8 (2-5), 759-762 (1999).
[53] Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5), 753-757 (2008).
[54] P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics 103 043720-1-043720-7 (2008).
[55] T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond,” Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[56] Robert Gomer, Field emission and field ionization, American Institute of Physics, 21-29 (1993).
[57] 陳皇欽, “超奈米微晶鑽石薄膜之微結構及電子場發射特性之研
究,”淡江大學物理學系博士論文, 58-59 (2010).
[58] 羅聖全, “以先進影像能譜電鏡技術:研究銅金屬化製程中低介
電常數材料之介電性質與熱穩定性,”, 國立清華大學工程與系
統科學系博士論文, Ch.2 (2003).
[59] 李彥志,“元件用奈米晶鑽石薄膜”, 國立清華大學材料科學與
工程學系博士論文, 80-81 (2006).
[60] Se Youn Moon, W. Choe, Han S. Uhm, Y. S. Choi,
"Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tebe", Physics of plasmas vol. 9 (2002)
[61] V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, ─Nitrogen-doped diamond films∥, J. Appl. Phys., 85, 7455 (1999).
[62] S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, ─Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation∥, J. Vac. Sci. Technol. B, 18(4), 1997 (2000).
[63] W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, ─ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis∥, Appl. Phys. Lett., 68, pp720(1996).
[64] I-Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, ─Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and
electron-field-emission properties of chemical-vapor-deposited diamond films∥, Appl. Phys. Lett, 77, 1277 (2000).
[65] X. Jiang, P Willich, M. Paul, and C-P. Klages, ─In situ boron doping of chemical-vapor-deposited diamond films∥, Journal of Materials Research, 14, 3211 (1999).
[66] Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, ─Theoretical-Study of Field-Emission from Diamond∥, Appl. Phys. Lett., 65, 2562 (1994).
[67] V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov,
─Field-Emission from Silicon Spikes with Diamond Coatings∥, J. Vac,Sci. Technol, B 13, 418 (1995).
[68] D. A. Buck and K. R. Shoulders, ─An approach to
microminiature systems∥, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信