§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2607201117282400
DOI 10.6846/TKU.2011.00949
論文名稱(中文) 利用漸近疊代方法研究黑洞準正則模的性質
論文名稱(英文) The Asymptotic Iteration Method (AIM) Applied to QNMs of Black Holes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 黃騰銳
研究生(英文) Teng-Rui Huang
學號 697210135
學位類別 碩士
語言別 英文
第二語言別
口試日期 2011-06-30
論文頁數 53頁
口試委員 指導教授 - 曹慶堂
委員 - 曹慶堂
委員 - 何俊麟
委員 - 陳江梅
關鍵字(中) 黑洞
準正則模
漸近疊代方法
微擾方程
關鍵字(英) Black Hole
QNM
AIM
Perturbation
第三語言關鍵字
學科別分類
中文摘要
我們在這篇論文裡說明如何運用漸近疊代方法(the asymptotic iteration method),計算四維時空裡不同黑洞(Schwarzschild、Reissner-Nordström和Kerr)的準正則模(quasinormal modes)。對於Schwarzschild黑洞,我們計算重力微擾的準正則頻率。至於Kerr黑洞,我們則計算純量和重力微擾的準正則頻率。我們特別討論低模的數值結果,並且和之前發表的結果做比較。
英文摘要
In this thesis we show how to use the asymptotic iteration method (AIM) to numerically calculate the quasinormal modes (QNMs) of different (Schwarzschild, Reissner-Nordström and Kerr) black holes in four-dimensional spacetime. For  Schwarzschild black holes, we compute the quasinormal frequencies of the gravitational perturbations. For the Kerr black holes, we consider both the scalar and the gravitational cases. We discuss our results especially for the low-lying modes, and compare them to previously published results.
第三語言摘要
論文目次
Contents
Chapter 1 Introduction                                     1
1.1 The QNMs of black holes                                1
1.2 Formalism of the AIM                                   2
Chapter 2 Schwarzschild black holes                        7
2.1 Radial perturbation equation for Schwarzschild black holes                                                      7
2.2 The AIM for determining the quasinormal frequencies of Schwarzschild black holes                                 11
2.3 The numerical results                                 16
Chapter 3 Reissner-Nordström black holes                  24
3.1 Radial perturbation equations for Reissner-Nordström black holes                                               24
3.2 The AIM for determining the quasinormal frequencies of Reissner- Nordström black holes                           27
3.3 The numerical results                                 30
Chapter 4 Kerr black holes                                34
4.1 Angular and radial perturbation equations for Kerr black holes                                               34
4.2 The AIM for determining the quasinormal frequencies of Kerr black holes                                          37
4.3 The numerical results                                 46
Chapter 5 Conclusions                                     50
References                                                52

Figures and Tables
Figure 1. Regge-Wheeler and Zerilli potentials for l=2 and l=3 for gravitational perturbation. 11
Figure 2. The Regge-Wheeler potential for l=2 to5. 16
Figure 3.  ξ for l=2 to 30. 17
Figure 4. The Schwarzschild gravitational quasinormal frequencies for l=2 by the AIM. 19
Table 1. First 10, 20th, 30th Schwarzschild gravitational quasinormal frequencies to four decimal place for l=2 compared with the continued fraction method [10] and the WKB method[11]. 20
Table 2. First 10, 20th, 30th Schwarzschild gravitational quasinormal frequencies to four decimal place for l=3 compared with the continued fraction method [10] and the WKB method [11]. 22
Figure 5. The trend of Schwarzschild gravitational quasinormal frequencies of different n for l=2 from the number of iterations 60 to 300 with step 20. 22
Figure 6. First 5 Schwarzschild gravitational quasinormal frequencies for l=2 to 30. Fundamental mode is at the top, fifth overtone at the bottom. The quasinormal frequencies go from left to right when l is increased. 23
Table 3. Reissner-Nordström quasinormal frequency parameter values for the fundamental and two lowest overtones for l=2 and i=2. 31
Table 4. Reissner-Nordström quasinormal frequency parameter valuesfor the fundamental and two lowest overtones for l=2 and i=1. 32
 Table 5. Reissner-Nordström quasinormal frequency parameter valuesfor the fundamentaland two lowest overtones for l=1 and i=1. 33
Figure 7. Kerr scalar quasinormal frequencies for the fundamental and first overtones, for l=1. Values shown for a=0, .1, .2, .3, .4, .45. 47
Figure 8. Kerr scalar quasinormal frequencies for the first 3 overtones, for l=2. Values shown for a=0, .1, .2, .3, .4, .45. 47
Table 6. Angular separation constants and Kerr gravitational quasinormal frequencies for the fundamental mode corresponding to l=2 and m=0 compared with the continued fraction method [10]. 48
Table 7. Angular separation constants and Kerr gravitational quasinormal frequencies for the fundamental mode corresponding to l=2 and m=1  compared with the continued fraction method [10]. 49
參考文獻
[1] H. Ciftci, R. L. Hall and N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003).
[2] H. T. Cho, A. S. Cornell, J. Doukas, and W. Naylor, Class. Quant. Grav. 27, 155004 (2010).
[3] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
[4] F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).
[5] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
[6] F. J. Zerilli, Phys. Rev. D 9, 860 (1974).
[7] V. Moncreif, Phys. Rev. D 9, 2707 (1974); 10, 1057 (1974); 12, 1526 (1975).
[8] H. P. Nollert, Class. Quant. Grav. 16, R159 (1999).
[9] E. Berti, V. Cardoso and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009).
[10] E. W. Leaver, Proc. R. Soc. A 402, 285 (1985).
[11] S. Iyer, Phys. Rev. D 35, 3632 (1987).
[12] S. Chandrasekhar, Proc. R. Soc. Lond. A 392, 1 (1984).
[13] H. P. Nollert, Phys. Rev. D 47, 5253 (1993).
[14] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).
[15] K. D. Kokkotas and B. Schutz, Phys. Rev. D 37, 3378 (1988).
[16] E. W. Leaver, Phys. Rev. D 41, 2986 (1990).
[17] S. Chandrasekhar, The Mathematical Theory of Black Holes,
    page 237 (Clarendon, Oxford, 1983).
[18] K. D. Kokkotas, Class. Quant. Grav. 8, 2217 (1991).
[19] S. Detweiler, Proc. R. Soc. London A352, 381 (1977).
[20] E. Seidel and S. Iyer, Phys. Rev. D 41, 374 (1990).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信