§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2607201018034400
DOI 10.6846/TKU.2010.00952
論文名稱(中文) 使用法布里-珀羅雷射二極體之光通道故障監測技術
論文名稱(英文) Optical Channel Fault Monitoring Techniques Using Fabry-Perot Laser Diodes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 胡懿存
研究生(英文) Yi-Tsuen Hu
學號 697440062
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2010-07-01
論文頁數 84頁
口試委員 指導教授 - 楊淳良(clyang@mail.tku.edu.tw)
委員 - 李三良(sllee@mail.ntust.edu.tw)
委員 - 曹恆偉(tsaohw@cc.ee.ntu.edu.tw)
委員 - 劉政光(ckliu@mail.ntust.edu.tw)
關鍵字(中) 法布里-珀羅雷射二極體
被動光網路
故障監測
關鍵字(英) Fabry-Perot Laser Diode
Passive Optical Network (PON)
Fault Monitoring
第三語言關鍵字
學科別分類
中文摘要
隨著寬頻應用時代的來臨,使用者的頻寬需求越來越大。光纖網路已成為目前寬頻有線網路的最佳方案。在接取網路技術中,以被動光網路(Passive Optical Network, PON)最具優勢。它能提供高品質與超寬頻的傳輸網路服務,但是只需要一些被動光元件放置在局端與用戶端之間。因此可避免主動元件暴露於室外環境中所衍生的施工及維護問題。故被動光網路架構可以同時符合簡化網路設計、降低佈建及維修成本等要求。為了確保網路服務的品質,如何有效地維護被動光網路系統實為非常重要的課題。
在本篇論文中,我們提出一故障監測系統,在被動光網路中可偵測出分佈光纖(Distribution Fiber)的斷裂及光網路單元(Optical Network Unit, ONU)的狀態。此故障監測系統採用輪詢(Polling)模式運作。在ONU端的光監測單元(Optical Monitoring Unit, OMU)以一顆法布里-珀羅(Fabry-Perot, FP)雷射二極體作為光收發機(Transceiver),平常操作在接收狀態;當OMU接收到它的識別頻率時,FP雷射二極體將轉變為發射狀態,並依據ONU的狀態然後調變上一相對應的音頻音。在此情況下,光線路終端(Optical Line Terminal)的音解碼器(Tone Decoder)可解碼出每一分佈光纖及ONU的狀態。
英文摘要
With the upcoming era of broadband applications, the users are going to demand far more bandwidth. Fiber-optic network has become the best solution in wired broadband networks. Among the existing access network technologies, passive optical network (PON) is predominant. It can provide high quality and ultra-wideband transmission network services, but it only needs some passive optical components placed in the region between the central office and end users. Thus construction and maintenance issues derived from the exposure of active optical components in the outdoor environment can be avoided. Therefore, passive optical network architecture can simultaneously meet the requirements for simplifying network design and reducing the cost of deployment and maintenance. In order to ensure the quality of network service, how to effectively maintain the passive optical network system is indeed very important as an issue.
  In this thesis, we propose a fault monitoring system, which can detect the breaking of distribution fibers and monitor the statuses of optical network units (ONUs) in passive optical networks. This fault monitoring system adopts the operation in polling mode. An optical monitoring unit (OMU) at an ONU, which employs a Fabry-Perot (FP) laser diode as an optical transceiver, normally operates in receiving state. When an OMU receives its identity frequency, FP laser diode will be turned into transmitting state and then be modulated by a corresponding tone according to the status of an ONU. Under the circumstances, the tone decoder at the optical line terminal can decode the statuses of each distribution fiber and ONU.
第三語言摘要
論文目次
第一章 緒論
1.1 前言----------------------------------------------------------------------------1
1.2 研究動機----------------------------------------------------------------------4
1.3 論文架構----------------------------------------------------------------------6
第二章 雷射二極體及光調變介紹
2.1 雷射二極體之類型----------------------------------------------------------7
2.1.1 法布里-珀羅雷射二極體(FP-LD) --------------------------------9
2.1.2 分佈反饋雷射二極體(DFB-LD) --------------------------------12
2.2 光調變之類型--------------------------------------------------------------15
2.2.1 直接調變-------------------------------------------------------------15
2.2.2 外部調變-------------------------------------------------------------16
第三章 被動光網路介紹
3.1 被動光網路簡介-----------------------------------------------------------19
	3.1.1 被動光元件----------------------------------------------------------20
	3.1.2 被動光網路特性----------------------------------------------------21
3.2 被動光網路之類型--------------------------------------------------------23
3.2.1 E-PON-----------------------------------------------------------------24
3.2.2 G-PON----------------------------------------------------------------26
3.2.3 WDM-PON-----------------------------------------------------------27
3.2.4 NG-PON--------------------------------------------------------------30
第四章 被動光網路監測技術
4.1 先前技術介紹--------------------------------------------------------------33
4.2 光時域反射儀--------------------------------------------------------------38
4.2.1 原理與參數----------------------------------------------------------39
4.2.2 光時域反射儀之種類----------------------------------------------51
4.3 OAM協定--------------------------------------------------------------------52
	4.3.1OAM監測參數-------------------------------------------------------54
第五章 基於法布里珀羅雷射之光網路監測技術
5.1 前言--------------------------------------------------------------------------56
5.2 光網路監測系統之設計--------------------------------------------------56
5.2.1 OLT監測系統之設計----------------------------------------------59
5.2.2 ONU/ONT監測系統之設計---------------------------------------60
5.3實驗結果---------------------------------------------------------------------61
5.3.1 監測之參數----------------------------------------------------------64
5.3.2 監測系統之效能分析----------------------------------------------65
第六章 導入光時域反射技術之整合型光網路監測技術
6.1 前言--------------------------------------------------------------------------70
6.2 導入光時域反射技術之OLT監測系統-------------------------------70
6.2.1 監測技術之設計----------------------------------------------------70
6.2.2 特性與參數----------------------------------------------------------71
6.3實驗結果---------------------------------------------------------------------72
	6.3.1 監測之參數----------------------------------------------------------75
	6.3.2 監測系統之效能分析----------------------------------------------76
第七章 結論與未來研究方向
7.1 成果與討論-----------------------------------------------------------------78
7.2未來研究方向---------------------------------------------------------------79
參考文獻-------------------------------------------------------------------------------80
圖目錄
圖1.1 各種光纖接取服務技術------------------------------------------------------2
圖1.2全球被動光網路市場分布----------------------------------------------------4
圖2.1受激吸收、自發放射、受激放射----------------------------------------------7
圖2.2 雷射二極體之居量反轉------------------------------------------------------8
圖2.3 FP共振腔基本特性----------------------------------------------------------10
圖2.4 FP雷射之光頻譜-------------------------------------------------------------11
圖2.5 雷射二極體的增益曲線----------------------------------------------------12
圖2.6 單模態雷射二極體結構----------------------------------------------------13
圖2.7 DFB雷射頻譜圖--------------------------------------------------------------14
圖2.8 光調變方式-------------------------------------------------------------------15
圖2.9 直接調變示意圖-------------------------------------------------------------15
圖2.10 Mach-Zehnder式電光調變器---------------------------------------------17
圖2.11電光調變器的轉移曲線----------------------------------------------------18
圖3.1一般被動光網路結構示意圖-----------------------------------------------20
圖3.2 E-PON光網路架構圖--------------------------------------------------------25
圖3.3 WDM-PON光網路架構圖--------------------------------------------------28
圖3.4 被動光網路預估演進-NG-PON ------------------------------------------31
圖4.1似OTDR方式之監測網路--------------------------------------------------33
圖4.2監測元件可切換式監測架構-----------------------------------------------34
圖4.3加入拉曼泵激雷射後之監測架構-----------------------------------------35
圖4.4以光纖光柵或者鏡面為監測元件之架構--------------------------------36
圖4.5以干涉裝置為監測元件之監測架構--------------------------------------37
圖4.6玻璃光纖衰減特性之波長相關--------------------------------------------38
圖4.7 OTDR內部系統架構方塊圖-----------------------------------------------40
圖4.8不同的光脈衝寬度下空間解析度與SNR的差異-----------------------42
圖4.9光脈衝遇到事件之圖解說明-----------------------------------------------43
圖4.10事件死區的示意圖----------------------------------------------------------43
圖4.11鬼影示意圖-------------------------------------------------------------------45
圖4.12含有反射峰值的鬼影軌跡圖----------------------------------------------45
圖4.13軌跡圖範例-------------------------------------------------------------------46
圖4.14動態範圍與量測範圍-------------------------------------------------------47
圖4.15光纖斷點處,在OTDR上所呈現的軌跡圖-----------------------------48
圖4.16光纖彎曲造成:(a)損耗,(b)光纖裂痕------------------------------------49
圖4.17光纖中間斷裂造成後段光纖超出OTDR可偵測範圍----------------50
圖5.1一般雷射封裝架構-----------------------------------------------------------57
圖5.2光網路監測系統--------------------------------------------------------------57
圖5.3光網路監測系統OMU端之設計------------------------------------------60
圖5.4光網路監測系統OLT端之設計--------------------------------------------60
圖5.5示波器預計觀察結果示意圖-----------------------------------------------61
圖5.6四通道實驗測試架構--------------------------------------------------------61
圖5.7四通道實驗結果--------------------------------------------------------------62
圖5.8故障發生下之實驗架構-----------------------------------------------------63
圖5.9故障發生下之實驗結果-----------------------------------------------------63
圖5.10通道偵測中心頻率及保護頻寬-------------------------------------------65
圖5.11入射光對準FP-LD波長位置----------------------------------------------67
圖5.12光網路監測系統穩定度測試----------------------------------------------68
圖6.1光網路整合型監測系統方塊圖--------------------------------------------71
圖6.2光網路整合型監測系統之實驗架構圖-----------------------------------72
圖6.3實驗結果-----------------------------------------------------------------------74
圖6.4 OTDR偵測光纖斷點實驗結果--------------------------------------------75
圖6.5斷面形狀對於光時域反射儀軌跡圖之影響-----------------------------75
圖6.6監測光源波長位置對於OMU接收靈敏度之影響---------------------77
表目錄
表3.1 被動光網路標準特性-------------------------------------------------------24
表5.1監測中心頻率配置表--------------------------------------------------------64
表5.2極化影響靈敏度--------------------------------------------------------------66
表5.3雷射背部PD及單顆PD之靈敏度比較-----------------------------------67
參考文獻
[1] T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When,” IEEE Proceedings, vol. 94, no. 5, pp. 911-934, May 2006.
[2] 主編:楊淳良、趙亮琳,作者:李揚漢、許立根、譚昌文、洪鴻文、 曹士林,光纖通信網路,五南圖書出版股份有限公司,Jul. 2007.
[3] C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” IEEE/OSA J. Lightwave Technol., vol. 24, no. 12, pp. 4568-4582, Dec. 2006.
[4] 馮國璋, “光纖到家市場攻防戰起E-PON/G-PON兩強對峙,” 新通訊《趨勢眺望》, 84期, Feb. 2008.
[5] J. Georage, “FTTH Design with Future in Mind,” Digest FTTH Conf., Las Vegas, NV, Oct. 2005, Session 7D.
[6] G. Keiser, Optical Fiber Communications, Chapter 4, Mcgraw-Hill pp. 177-183, 2000.
[7] 陳瑞鑫、陳鴻仁、林依恩,光通訊原理與技術,全華科技圖書股份有限公司,Jan. 2004.
[8] 原榮,光纖通訊系統,新文京開發出版股份有限公司,Aug. 2004.
[9] D. Law. (2006, Oct.). IEEE 802.3 CSMA/CD (Ethernet). Available: http://www.ieee802.org/3/.
[10] Flexlight and BroadLight, “Comparing Gigabit PON Technologies- ITU-T G.984 GPON vs. IEEE 802.3ah EPON,” http://www.broadlight.com/docs/pdfs/wp-gpon-vs-epon.pdf
[11] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) Technologies for Broadband Access: A Review,” OSA J. Opt. Netw., vol. 4, no. 11, pp. 737-758, Nov. 2005.
[12] N. Genay, P. Chanclou, F. Saliou, Q. Liu, T. Soret, and L. Guillo, “Solutions for Budget Increase for the Next Generation Optical Access Network,” ICTON 2007, Tu.A4.7, Sousse, pp. 317 - 320,Dec. 2007.
[13] M. Hajduczenia, Pedro R. M. Inácio,Henrique J. A. da Silva, Mário M. Freire, Paulo P. Monteiro, “10G EPON Standardization in IEEE 802.3av Project,” OFC 2008, paper no. NMD4, San Diego, California, USA, Feb. 2008.
[14] 李秉鈞, “下一代PON標準與技術的進展,” 通信技術,Jun. 2009.
http://tech.c114.net/165/a407130.html
[15] I. Sankawa, S. Furukawa, Y. Koyamada, and H. Izumita, “Fault Location Technique for In-Service Branched Optical Fiber Networks,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 766-768, Oct. 1990.
[16] C. K. Chan, F. Tong, L. K. Chen, K. P. Ho, and D. Lam, “Fiber-Fault Identification for Branched Access Networks Using a Wavelength-Sweeping Monitoring Source,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 614-616, May 1999.
[17] C. K. Chan, F. Tong, L. K. Chen, J. Song, and D. Lam, “A Practical Passive Surveillance Scheme for Optically Amplified Passive Branched Optical Networks,” IEEE Photon. Technol. Lett., vol. 9, no. 4, pp. 526-528, Apr. 1997.
[18] J. Park, J. Baik, and C. Lee, “Fault-Detection Technique in a WDM-PON,” OSA J. Photonics Express, vol. 15, no. 4, Feb. 2007. 
[19] K. Yuksel, S. Letheux, A. Grillet1, M. Wuilpart, D. Giannone, J. Hancq, G. Ravet, and P. Mégret, “Centralised Optical Monitoring of Tree-Structured Passive Optical Networks Using a Raman-Assisted OTDR,” Transparent Optical Networks ICTON '07. 9th , vol. 1, 2007.
[20] H. Schmuck, J. Hehmann, M. Straub and Th. Pfeiffer, “Embedded OTDR Techniques for Cost-Efficient Fibre Monitoring in Optical Access Networks,” Proc. of the 32th European Conference on Optical Communications, ECOC’ 06, 2006.
[21] K. Ozawa, M. Shigehara, A. Ban, T. Naitou, and K.Shimoura, “Field Trial of In-Service Individual Line Monitoring of PONs Using a Tuneable OTDR,” Proc. of the 14th Conference on Optical Fibre Sensors, OFS’00, Venice, pp. 880-883, 2000.
[22] R. L. Jr, A. McCurdy, and Y. Sun, “Challenges and Solutions for 10 Gbps PON,” OFC 2008, paper no. NMD3, San Diego, California, USA, Feb. 2008.
[23] S.B. Park, D.K. Jung, H.S. Shin, D.J. Shin, S. Hwang, Y. Oh, and C. Shim, “Optical Fault Monitoring Method Using Broadband Light Source in WDM-PON,” Electronics Letters 16th, vol. 42, no. 4, Feb. 2006.
[24] S. L. Lee, S. T. Ji, and C. H. Cheng, “ Novel Fault Monitoring Scheme for PON Systems Using Wavelength Sweeper and Interferometric Devices,” OECC/ACOFT 2008, pp. 1-2, 2008.
[25] W. R. Woodward, “Optical Time Domain Reflectometer – Basic Theory and Application,” W R Systems Ltd.
[26] Tech Optics Optical Time Domain Reflectometers (OTDRs), http://www.techoptics.com/pages/OTDR/OTDR%20Intro.html 
[27] G. Lucas Leclin, T. Avignon, and L. Jacubowiez, “An Optical Time Domain Reflectometry Set-Up for Laboratory Work at École Supérieure d'Optique,” Conference on Education and Training in Optics & Photonics Marseille, 27th Oct. 2005.
[28] B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a Polarisation-OTDR in Optical Fibers,” Group of Applied Physics University of Geneva, 1211 Geneva 4, Switzerland, 1999.
[29] 許仕, “單元七OTDR光纖損耗之量測,” 94年教育部通訊教改計畫「光纖製備與量測多媒體教材」。
[30] Data sheet: OTDR MT9083A, http://www.eu.anritsu.com/files/MT9083A_OTDR_AccessMaster.pdf
[31] S. D. Personick, “Photon Probe - An Optical Fiber Time Domain Reflectometer,” Bell Syst. Tech. J., vol. 56, pp. 355-366, Mar. 1977.
[32] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical Time Domain Reflectometer,” OSA Appl. Opt., vol. 16, pp. 2375-2379, Sept. 1977.
[33] 楊淳良, “單元五光纖斷點的量測介紹與實驗,” 98年教育部顧問室「資通訊科技人才培育先導型計畫」寬頻有線教學推動聯盟中心「DWDM技術實驗教材」。
[34] D. Zhzng, B. Shi, H.L. Cui, and H.Z. Xu, “Improvement of Spatial Resolution of Brillouin Optical Time Domain Reflectometer Using Spectral Decomposition,” Optica Applicata, vol. XXXIV, no. 2, 2004.
[35] S. Kher, G. Srikant, S. Chaube, A. L. Chakraborty, T. P. S. Nathan, and D. D. Bhawalkar, “Design, Development and Studies on Raman-Based Fibre-Optic Distributed Temperature Sensor,” Current Science, vol. 83, no. 11, 10th Dec. 2002.
[36] 陳勇寬, “提升乙太網路管理效率OAM協助進行遠端管理,” 新通訊號《技術前瞻》, 81 期, Nov. 2007.
[37] 陳世賢, 洪文旺, 游幼蘋, “詳談都會乙太網路服務技術,” 新通訊號《技術前瞻》, 40 期, Jun. 2004.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信