淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2607201013254400
中文論文名稱 方形同軸吸波材料測試製具的結構與性能探討
英文論文名稱 Investigation of a novel square coaxial test fixture for the EMC absorber material
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 饒家豪
研究生英文姓名 Chia-Hao Jao
學號 697440377
學位類別 碩士
語文別 中文
口試日期 2009-07-07
論文頁數 107頁
口試委員 指導教授-李慶烈
委員-丘建青
委員-陳一鋒
中文關鍵字 同軸吸波材料量測 
英文關鍵字 EMC absorber measurement 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文的主要目的在設計一個可以用來量測一種吸波磚型態的吸波材料的製具,並探討其校正的程序與效果。首先,藉由探討電磁波於同軸波導內的傳遞情形,檢視與確認模擬結果的合理無誤之後(使用模擬軟體SEMCAD X),進一步藉由模擬設計與驗證適當的準具尺寸與所需的校正kit的長度。
在研究初期,對於製具結構的適合尺寸尚無法精確掌握,使用軟體模擬來進行輔助設計,可以減少實際製具製做的金錢與時間的浪費,並提供吾人對其特性的初步瞭解,相當便利。
對於量測製具結構的探討,吾人首先模擬一單純的同軸線結構,其內半徑為1.52mm,外半徑為3.5mm,目的在證模擬軟體的可信度。接著,為了因應真正製具結構的阻抗不連續的效應,吾人修改單純的同軸線結構,刻意在同軸線的內導體引入一金屬細環(將內導體加粗即可),使它成為一阻抗不連續的結構,反射量約-30~-15dB左右,其目的在確認,針對此種阻抗不連續之結構,吾人可以利用校正的程序,將阻抗不連續的效應於反射參數的量測值中予以校正排除(deembedded),進一步獲得單純來自於吸波磚材料的反射貢獻。
在藉由模擬軟體確認針對一具金屬細環的阻抗不連續之結構,校正的程序的適用性之後,接下來,吾人就完整的同軸正方形製具進行模擬,其前面連接以同軸線激發,中間則是喇叭型的過渡區域,正方形製具的結構及尺寸雖然和激發同軸線相差很大,但中間的喇叭型過渡區域則可適度的減少反射,其反射量約-15dB左右,針對此種同軸正方形製具的阻抗不連續之結構,吾人可以利用上述的校正程序,將正方形同軸段之前的阻抗不連續效應於反射參數的量測值中予以校正排除(deembedded),進一步獲得置於其內部的吸波磚材料對反射的貢獻。
在使用軟體模擬的過程中,吾人發現其在低頻(約500MHz以下)的結果不盡理想,為此,嘗試改使用外部的高斯函數當作激發訊號的source,目的在增加其直流與低頻的頻譜成分,以改善低頻的模擬結果。另外,也優化了校正的方法,從原先使用三種不同距離的短路片,變成多種(至多六種即可)不同距離的短路片,如此一來,便可有效解決校正所帶來的反射係數尖峰(peak)產生的問題。
英文摘要 The main purpose of this thesis is to design a test fixture for the absorbing materials (in brick form with square shape) used in the EMI chamber, and to explore the calibration procedures. Initially, by examining the propagation of a electromagnetic wave in an uniform coaxial line, the characteristics of the simulation results are correctly verified after several tests (using the simulation software SEMCAD X). Furthermore, the design and verification of the calibration kits with appropriate length are conducted by simulation.

At the first stage of test fixture design, the appropriate size of the structure usually could not be well known precisely, where software simulation can be employed to aid the design. By this, we can control and reduce the money and time for making and re-making the actual test fixture setup. It also provide us a preliminary understanding of its features in a very convenient way.


For the deep study of the measurement test fixture , this thesis first simulate an uniform 50 Ohms coaxial line structure, within an inner radius 1.52mm and outer radius 3.5mm. The purpose is to verify the simulation software in the credibility and consistency. Then, in order to test the effect of impedance discontinuities existing in a real measurement system, I modified the simple coaxial line structure, for which a thin metal ring is deliberately introduced on the coaxial line inner conductor. Certain part of the inner conductor is widen to introduce the impedance discontinuous, of which the reflection is about -30~-15dB. The purpose is to confirm that for this kind of impedance discontinuity the calibration procedure can be employed to calibrate the effect of impedance discontinuities such that the measured reflection parameters can be correctly de-embedded. Thus, the contribution to the reflection simply due to the brick of absorbing material can be determined.

After the confirmation for the small ring of the coaxial line structure and the applicability of the calibration procedure by software simulation, this thesis conducted another simulation for a coaxial square line measurement system, in front of which a coaxial line is connected to excite the measurement system, while in between there exists a flaring horn (the transition region). Although the size of the square coaxial line system is greatly different from the excited coaxial line, but the middle horn-like transition region is appropriately designed to reduce the reflection, of which the reflection is about-15dB or so. For such a coaxial square system with impedance discontinuity, the above-mentioned calibration procedure can be employed again to calibrate the effect of impedance discontinuities such that the measured reflection parameters can be correctly de-embedded. Thus, the contribution to the reflection simply due to the brick of absorbing material placed inside the coaxial square system can be determined.

During the course of software simulation process, It is found that at low frequencies (around 500MHz and less) the de-embedded results are not satisfactory. To improve this, the Gaussian function is used to serve as an external excitation signal source, of which the aim is to increase the dc and low frequency spectral components. Finally, it is found that the characteristics of the calibration results show some unreasonable peaks in the reflection coefficients. For correction of the calibration procedure, this thesis examines the effects of utilization of more calibration kits:instead of three shorting plates with different distances, more (up to six) shorting plates with different distances are tested, and the results show that the problems of unreasonable peaks in the reflection coefficients are successfully resolved.
論文目次 第一章 序論...................................................................................................1

1.1 研究背景...........................................................................................1
1.2 研究動機...........................................................................................2
1.3 論文架構...........................................................................................3
第二章 同軸線量測.......................................................................................5
2.1 簡單同軸線之結構...........................................................................5
2.2 具細環的同軸線結構.....................................................................11
- 2.2.1 校正基本概念..........................................................................21
- 2.2.2 具細環的同軸線之校正............................................................24
第三章 方形同軸量測製具的特性模擬.....................................................34
3.1 簡介.................................................................................................34
3.2 方形同軸製具的結構.....................................................................35
- 3.2.1 方形同軸量測製具之校正模擬...............................................36
- 3.2.2 更改方形同軸製具材質的測試...............................................40
- 3.2.3 加入損耗性材質於方形同軸製具內的測試...........................45
- 3.2.4 納入損耗性材質於內部的方形同軸製具之校正...................51
3.3 縮小化方形同軸製具.....................................................................60
- 3.3.1 縮小型方形同軸製具之結構...................................................60
- 3.3.2 縮小化方形同軸製具之校正...................................................62
第四章 校正技術及低頻量測之改良........................................................73
4.1 增加短路PEC終端的個數............................................................73
- 4.1.1 以五種不同長度的短路終端來校正方形同軸製具...............74
- 4.1.2 以六種不同長度的短路終端來校正方形同軸製具之測試...81
4.2 使用Gaussian訊號改善低頻的校正情況.....................................84
第五章 結論...............................................................................................104
參考文獻.......................................................................................................106

圖2.1 基本同軸線結構...................................................................................5
圖2.2基本同軸線結構的電流圖.....................................................................5
圖2.3基本同軸線結構的電壓圖.....................................................................7
圖2.4基本同軸線結構的S11幅度圖..............................................................8
圖2.5同軸線結構末端加PEC之電流圖.........................................................9
圖2.6同軸線結構末端加PEC之電壓圖.........................................................9
圖2.7同軸線結構末端加PEC之S11幅度圖................................................10
圖2.8同軸線結構末端加PEC之S11相位圖...............................................10
圖2.9 具細環的同軸線結構..........................................................................12
圖2.10具細環的同軸線結構之電流圖.........................................................13
圖2.11具細環的同軸線結構之電壓圖.........................................................13
圖2.12具細環的同軸線結構之S11幅度圖..................................................14
圖2.13具細環的同軸線結構之S11相位圖..................................................14
圖2.14具細環的同軸線結構末端接PEC之電流圖.....................................15
圖2.15具細環的同軸線結構末端接PEC之電壓圖.....................................16
圖2.16具細環的同軸線結構末端接PEC之S11幅度圖..............................16
圖2.17具細環的同軸線結構末端接PEC之S11相位圖..............................17
圖2.18具細環的同軸線末端接待測物之結構圖.........................................18
圖2.19具細環的同軸線結構末端接待測物之電流圖.................................19
圖2.20具細環的同軸線結構末端接待測物之電壓圖.................................19
圖2.21具細環的同軸線結構末端接待測物之S11幅度圖..........................20
圖2.22具細環的同軸線結構末端接待測物之S11相位圖..........................20
圖2.23校正概念示意圖.................................................................................23
圖2.24 L=150mm具細環的同軸線結構末端接PEC之電流圖...................24
圖2.25 L=150mm具細環的同軸線結構末端接PEC之電壓圖...................25
圖2.26 L=150mm具細環的同軸線結構末端接PEC之S11幅度圖............25
圖2.27 L=150mm具細環的同軸線結構末端接PEC之S11相位圖............26
圖2.28 L=450mm具細環的同軸線結構末端接PEC之電流圖...................27
圖2.29 L=450mm具細環的同軸線結構末端接PEC之電壓圖...................27
圖2.30 L=450mm具細環的同軸線結構末端接PEC之S11幅度圖............28
圖2.31 L=450mm具細環的同軸線結構末端接PEC之S11相位圖............28
圖2.32 L=600mm具細環的同軸線結構末端接PEC之電流圖...................29
圖2.33 L=600mm具細環的同軸線結構末端接PEC之電壓圖...................29
圖2.34 L=600mm具細環的同軸線結構末端接PEC之S11幅度圖............30
圖2.35 L=600mm具細環的同軸線結構末端接PEC之S11相位圖............30
圖2.36 L=150mm具細環的同軸線結構末端接待測物之電流圖...............31
圖2.37 L=150mm具細環的同軸線結構末端接待測物之電壓圖...............31
圖2.38 L=150mm具細環的同軸線結構末端接待測物之S11幅度圖........32
圖2.39 L=150mm具細環的同軸線結構末端接待測物之S11相位圖........32
圖2.40 具細環的同軸線結構的S11幅度之校正結果................................33
圖3.1方形同軸製具結構的示意圖...............................................................35
圖3.2方形同軸製具結構終端開口的示意圖...............................................35
圖3.3 方形同軸製具的反射特性..................................................................36
圖3.4 L=150mm方形同軸製具結構終端接PEC之電流圖...........................37
圖3.5 L=150mm 方形同軸製具結構終端接PEC之電壓圖.........................37
圖3.6 L=150mm 方形同軸製具結構終端接PEC之S11幅度圖...................38
圖3.7 L=150mm 方形同軸製具結構終端接PEC之S11相位圖...................38
圖3.8 L=150mm 銅製方形同軸製具結構終端接PEC之電流圖.................40
圖3.9 L=150mm 銅製方形同軸製具結構終端接PEC之電壓圖.................41
圖3.10 L=150mm 銅製方形同軸製具結構終端接PEC之S11幅度圖.........41
圖3.11 L=150mm 銅製方形同軸製具結構終端接PEC之S11相位圖….....42
圖3.12 L=150mm方形同軸製具(σ = 5.813E+05)結構終端接PEC之電流圖.....................................................................................................................43
圖3.13 L=150mm 方形同軸製具(σ = 5.813E+005)結構終端接PEC之電壓圖.....................................................................................................................43
圖3.14 L=150mm 方形同軸製具(σ = 5.813E+005)結構終端接PEC之S11幅度圖.................................................................................................................44
圖3.15 L=150mm 方形同軸製具(σ = 5.813E+005)結構終端接PEC之S11相位圖................................................................................………………….....44
圖3.16 加入損耗性材質的方形同軸製具結構.............................................45
圖3.17 加入損耗性材質的方形同軸製具之電流圖.....................................46
圖3.18 加入損耗性材質的方形同軸製具之電壓圖.....................................46
圖3.19 加入損耗性材質的方形同軸製具之S11幅度圖...............................47
圖3.20 加入損耗性材質的方形同軸製具之S11相位圖...............................47
圖3.21 L=150mm內部損耗介質σ提升10倍的方形同軸製具之電流圖..... 48
圖3.22 L=150mm內部損耗介質σ提升10倍的方形同軸製具之電壓圖..... 49
圖3.23 L=150mm內部損耗介質σ提升10倍的方形同軸製具之S11幅度圖.................................................................................................................... 49
圖3.24 L=150mm內部損耗介質σ提升10倍的方形同軸製具之S11相位圖.................................................................................................................... 50
圖3.25 L=450mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之電流圖.................................................................................................................... 51
圖3.26 L=450mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之電壓圖.....................................................................................................................52
圖3.27 L=450mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC
之S11幅度圖...................................................................................................52
圖3.28 L=450mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC
之S11相位圖...................................................................................................53
圖3.29 L=600mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之電流圖.............................................................................................................54
圖3.30 L=600mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之電壓圖.............................................................................................................54
圖3.31 L=600mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之S11幅度圖.......................................................................................................55
圖3.32 L=600mm內部損耗介質σ提升10倍的方形同軸製具終端接PEC之S11相位圖.......................................................................................................55
圖3.33方形同軸製具末端置入一待測物之結構圖......................................56
圖3.34 L=150mm內部損耗介質σ提升10倍的方形同軸製具末端置入待測介質之電流圖.................................................................................................57
圖3.35 L=150mm內部損耗介質σ提升10倍的方形同軸製具末端置入待測介質之電壓圖.................................................................................................57
圖3.36 L=150mm內部損耗介質σ提升10倍的方形同軸製具末端置入待測介質之S11幅度圖.....................................................................................................58
圖3.37 L=150mm內部損耗介質σ提升10倍的方形同軸製具末端置入待測介質之S11相位圖.....................................................................................................58
圖3.38 損耗介質σ提升10倍的方形同軸製具校正結果..............................59
圖3.39 縮小化方形同軸製具結構圖............................................................61
圖3.40 縮小化方形同軸製具結構終端開口之示意圖................................61
圖3.41 L=150mm內部具損耗性材質的縮小型方形同軸製具之電流圖....62
圖3.42 L=150mm內部具損耗性材質的縮小型方形同軸製具之電壓圖....63
圖3.43 L=150mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖.....................................................................................................................63
圖3.44 L=150mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖.....................................................................................................................64
圖3.45 L=450mm內部具損耗性材質的縮小型方形同軸製具之電流圖....65
圖3.46 L=450mm內部具損耗性材質的縮小型方形同軸製具之電壓圖....65
圖3.47 L=450mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖.....................................................................................................................66
圖3.48 L=450mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖.....................................................................................................................66
圖3.49 L=600mm內部具損耗性材質的縮小型方形同軸製具之電流圖....67
圖3.50 L=600mm內部具損耗性材質的縮小型方形同軸製具之電壓圖....67
圖3.51 L=600mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖.....................................................................................................................68
圖3.52 L=600mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖.....................................................................................................................68
圖3.53 內部具損耗性材質的縮小化方形同軸製具終端置入待測物之結構圖.....................................................................................................................69
圖3.54 L=150mm內部具損耗性材質的縮小型方形同軸製具終端置入待測介質之電流圖.................................................................................................70
圖3.55 L=150mm內部具損耗性材質的縮小型方形同軸製具終端置入待測介質之電壓圖.................................................................................................70
圖3.56 L=150mm內部具損耗性材質的縮小型方形同軸製具終端置入待測介質之S11幅度圖...........................................................................................71
圖3.57 L=150mm內部具損耗性材質的縮小型方形同軸製具終端置入待測介質之S11相位圖...........................................................................................71
圖3.58 內部具損耗性材質的縮小型方形同軸製具之校正結果................72
圖4.1校正結果產生尖峰(peak)的示意圖......................................................73
圖4.2 L=330mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電流圖.............................................................................................................74
圖4.3 L=330mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電壓圖.............................................................................................................75
圖4.4 L=330mm內部具損耗性材質的縮小型方形同軸方形同軸製具終端接PEC之S11幅度圖.........................................................................……….75
圖4.5 L=330mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之S11相位圖......................................................................................................76
圖4.6 L=500mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電流圖.............................................................................................................77
圖4.7 L=500mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電壓圖.............................................................................................................78
圖4.8 L=500mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之S11幅度圖......................................................................................................78
圖4.9 L=500mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之S11相位圖......................................................................................................79
圖4.10 增加第四、五種短路距離後的校正結果........................................80
圖4.11 L=250mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電流圖.........................................................................................................81
圖4.12 L=250mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之電壓圖.........................................................................................................82
圖4.13 L=250mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之S11幅度圖..................................................................................................82
圖4.14 L=250mm內部具損耗性材質的縮小型方形同軸製具終端接PEC之S11相位圖..................................................................................................83
圖4.15 增加第六種短路距離後的校正結果................................................84
圖4.16 Gaussian訊號波形做為新的激發source..........................................85
圖4.17使用高斯訊號激發,模擬L=150mm內部具損耗性材質的縮小型方形同軸製具之電流圖.................................................................................86
圖4.18 使用高斯訊號激發,模擬L=150mm內部具損耗性材質的縮小型方形同軸製具之電壓圖.................................................................................87
圖4.19 使用高斯訊號激發,模擬L=150mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖…...................................................................87
圖4.20 使用高斯訊號激發,模擬L=150mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖..........................................................................88
圖4.21 使用高斯訊號激發,模擬L=330mm內部具損耗性材質的縮小型方形同軸製具之電流圖.................................................................................89
圖4.22 使用高斯訊號激發,模擬L=330mm內部具損耗性材質的縮小型方形同軸製具之電壓圖.................................................................................89
圖4.23 使用高斯訊號激發,模擬L=330mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖..........................................................................90
圖4.24 使用高斯訊號激發,模擬L=330mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖..........................................................................90
圖4.25 使用高斯訊號激發,模擬L=450mm內部具損耗性材質的縮小型方形同軸製具之電流圖.................................................................................91
圖4.26 使用高斯訊號激發,模擬L=450mm內部具損耗性材質的縮小型方形同軸製具之電壓圖.................................................................................92
圖4.27 使用高斯訊號激發,模擬L=450mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖..........................................................................92
圖4.28 使用高斯訊號激發,模擬L=450mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖..........................................................................93
圖4.29 使用高斯訊號激發,模擬L=500mm內部具損耗性材質的縮小型方形同軸製具之電流圖.................................................................................94
圖4.30 使用高斯訊號激發,模擬L=500mm內部具損耗性材質的縮小型方形同軸製具之電壓圖.................................................................................95
圖4.31 使用高斯訊號激發,模擬L=500mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖…......................................................................95
圖4.32 使用高斯訊號激發,模擬L=500mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖..........................................................................96
圖4.33 使用高斯訊號激發,模擬L=600mm內部具損耗性材質的縮小型方形同軸製具之電流圖.................................................................................97
圖4.34 使用高斯訊號激發,模擬L=600mm內部具損耗性材質的縮小型方形同軸製具之電壓圖.................................................................................98
圖4.35 使用高斯訊號激發,模擬L=600mm內部具損耗性材質的縮小型方形同軸製具之S11幅度圖…......................................................................98
圖4.36 使用高斯訊號激發,模擬L=600mm內部具損耗性材質的縮小型方形同軸製具之S11相位圖..........................................................................99
圖4.37使用高斯訊號激發,模擬內部具損耗性材質的縮小型方形同軸製具,終端置入待測物之電流圖.....................................................................100
圖4.38使用高斯訊號激發,模擬內部具損耗性材質的縮小型方形同軸製具,終端置入待測物之電壓圖.....................................................................100
圖4.39使用高斯訊號激發,模擬內部具損耗性材質的縮小型方形同軸製具,終端置入待測物之S11幅度圖..............................................................101
圖4.40使用高斯訊號激發,模擬內部具損耗性材質的縮小型方形同軸製具,終端置入待測物之S11相位圖..............................................................101
圖4.41使用高斯訊號激發,模擬內部具損耗性材質的縮小型方形同軸製具之校正結果...............................................................................................102
參考文獻 [1] Ching-Lieh Li and K.M. Chen, Determination of Electromagnetic Properties of Materials Using Open-Ended Coaxial Probe-Full Wave Analysis, IEEE Trans. on Instrumentation and Measurement, vol. IM-44, pp.19-27, Feb. 1995.
[2] Ching-Lieh Li and K.M. Chen, Determination of Dielectric Properties of Materials Using a Coaxial Cavity System Driven by a Coaxial Line, IEEE Trans. on Microwave Theory Tech. vol. MTT-42, pp.2195-2200, Dec. 1994.
[3] Sue-Pang Chang, Chung-Hsin Huang and Ching-Lieh Li, Oct. 2005, Wideband Measurement of the Electrical Properties of the Substrate Material Medium of Microwave Boards Using Two Transmission Lines, ICEMAC2005, Taipei, Taiwan.
[4] Takeya, S. and Shimada, K., New measurement method of RF absorber characteristics by large square coaxial line, Electromagnetic Compatibility, 1993.
[5] Hugo Pues, Yoeri Ariën, Frank Demming-Janssen and Jan Dauwen, Numerical Evaluation of Absorber Reflectivity in an Artificial Waveguide, Electromagnetic Compatibility, 2009 20th International.
[6] Wiatr, W.; Frender, R.; Zebrowski, M.; Characterization of microwave absorbing materials using a wideband T/R measurement technique, Microwaves, Radar and Wireless Communications, 2008. MIKON 2008. 17th International Conference on.
[7] Davidovich, M.V.; Alexeev, O.Yu.; Borisov, V.S.; Direct and inverse problems solutions for coaxial and waveguide probes Microwaves, Radar and Wireless Communications, 2004.
[8] Jing Shenhui; Ding Ding; Jiang Quanxing; Measurement of electromagnetic properties of materials using transmission/reflection method in coaxial line , Environmental Electromagnetics, 2003. CEEM 2003.
[9] Kefeng Liu; Analysis of the effect of ferrite tile gap on EMC chamber having ferrite absorber walls , Electromagnetic Compatibility, 1996. Symposium Record. IEEE 1996 International Symposium on .


[10] Holloway, C.L.; McKenna, P.M.; Dalke, R.A.; Perala, R.A.; Devor, C.L., Jr.; Time-domain modeling, characterization, and measurements of anechoic and semi-anechoic electromagnetic test chambers , Electromagnetic Compatibility, IEEE Transactions on , 2002.
[11] Shimada, K.; Takeya, S.; Site attenuation calculation of ferrite chamber , Electromagnetic Compatibility, 1994. Symposium Record. , pp. 393 – 398, 1994.
[12] Kehn, M.N.M.; Shafai, L.; Safari, F.; Noghanian, S.; Permittivity measurement of disk and annular dielectric samples using coaxial transmission line fixtures. part II: experimentation and accuracy analyses ,Electrical and Computer Engineering, pp.31-41, 2009.
[13] Lim, Y.Y.; Rotaru, M.D.; Alphones, A.; Popov, A.P.; Simple and improved dielectric parameter extraction of thin organic packaging materials using open-ended coaxial line technique , Microwaves, Antennas and Propagation, IEE Proceedings, pp.214-220, 2005.
[14] Filali, B.; Boone, F.; Rhazi, J.; Ballivy, G.; Design and Calibration of a Large Open-Ended Coaxial Probe for the Measurement of the Dielectric Properties of Concrete , IEEE Microwave Theory and Techniques Society , 2008.
[15] Hasar, U.C.; A New Calibration-Independent Method for Complex Permittivity Extraction of Solid Dielectric Materials, Microwave and Wireless Components Letters, IEEE , pp.788-790, 2008.
[16] Grosvenor, C.A.; Johnk, R.T.; Baker-Jarvis, J.; Janezic, M.D.; Riddle, B.; Time-Domain Free-Field Measurements of the Relative Permittivity of Building Materials , IEEE Instrumentation and Measurement Society , pp.2275-2282, 2009.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信