淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2607200717074000
中文論文名稱 微粒子懸浮液掃流薄膜過濾之探討
英文論文名稱 A Study on Cross-flow Membrane Filtration of Particulate Suspensions
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 潘玉敏
研究生英文姓名 Yu-Min Pan
學號 694360164
學位類別 碩士
語文別 中文
口試日期 2007-06-22
論文頁數 80頁
口試委員 指導教授-鄭東文
委員-葉和明
委員-蔡少偉
中文關鍵字 薄膜過濾  組成  微粒子懸浮液 
英文關鍵字 Membrane Filtration  Composition  Particulate Suspensions 
學科別分類
中文摘要 本研究主要探討混合微粒子懸浮液之掃流薄膜過濾特性,實驗系統為0.15和0.8μm之聚甲基丙烯酸甲酯(PMMA)粒子混合溶液,進行過濾操作,以薄膜阻擋懸浮液中PMMA粒子。探討懸浮液成分、液體速度、氣體速度、薄膜傾斜角度和操作壓力等濾速之影響,以尋求提升掃流薄膜過濾之效能。除此之外,研究中還進行濾餅之粒徑分佈分析,以瞭解操作條件對濾餅組成之影響。
實驗結果顯示:(1)於掃流過濾中,提高液體掃流流速,對濾速提升之效果不佳。(2)多相流動能有效的提升過濾效能。(3)薄膜傾斜角度為180°時,掃流速度對濾速提升之效果明顯。(4)比較不同成分懸浮液之濾速,懸浮液成分中小粒徑粒子含量越高則濾速越低。(5)粒徑較大之粒子較容易被掃流流體帶走。
英文摘要 The experiments for cross-flow membrane filtration of mixed particulate suspensions were carried out using mixtures of 0.15 and 0.8μm PMMA particles that were retained by the filter membrane. The effects of operating conditions, such as the composition of suspension, the liquid velocity, the gas velocity, inclination angle and filtration pressure on the permeate flux were discussed in order to searching for the efficiency enhancement in cross-flow membrane filtration. In addition, the particle size distribution of cake was analyzed in order to analyze the effect of various operating conditions on cake composition.
The experimental results were summarized as follows: (1) During cross-flow filtration, the flux improvement by increasing the liquid velocity was not apparent. (2) The multiphase flow can obviously enhance the filtration flux. (3) At 180°inclination, the cross-flow velocity could enhance the permeate flux effectively. (4) The more were the small size particles in the suspension, the lower in permeate flux was found. (5) The larger particles are swept away easily by the cross-flow velocity.
論文目次 目錄

圖目錄 III
表目錄 VII
第一章 序論 1
1.1 前言 1
1.2 薄膜分離 1
1.3 薄膜之特性 4
1.4 結垢現象 6
1.5 研究目的 7
第二章 文獻回顧 11
2.1 薄膜超過濾之特性 11
2.2 影響濾速之因素 14
2.3 提高濾速之方法 16
2.4 掃流超過濾濾速分析模式 20
2.4.1 阻力串聯模式 20
2.4.2 阻塞分析 22
第三章 實驗裝置與方法 31
3.1 實驗裝置 31
3.2 實驗藥品及薄膜 31
3.3 操作條件 32
3.3.1 系統操作條件 32
3.3.2 流量計校正與雷諾數計算 32
3.4 實驗方法與步驟 32
3.5 分析儀器 33
3.6 薄膜之保存 33
第四章 結果與討論 41
4.1 薄膜結構與純水濾速 41
4.2 操作參數對濾速之影響 41
4.2.1 薄膜傾斜角度與流體速度之影響 42
4.2.2 粒徑組成之影響 43
4.2.3 壓力之影響 44
4.3 操作條件對濾餅性質之影響 44
4.3.1 液體流速之影響 44
4.3.2 氣體流速之影響 45
4.3.3 壓力之影響 46
4.4 操作條件對粒徑分佈之影響 47
4.4.1 液體流速之影響 47
4.4.2 氣體流速之影響 48
4.4.3 壓力之影響 49
第五章 結論 66
5.1 實驗結果分析 66
5.2 濾餅分析 67
5.3 濾餅之粒徑分佈 68
5.4 總結 69
符號說明 70
參考文獻 73
附錄 78

圖目錄

圖1.1 薄膜分離程序之分類 9
圖1.2 濾餅過濾及掃流過濾示意圖 10
圖2.1 粒子大小與粒徑分析方法、分離方法之關聯性 24
圖2.2 過濾物質大小與膜過濾之關係圖譜 25
圖2.3 薄膜掃流超過濾示意圖 27
圖2.4 提高濾速方法之流程圖 28
圖2.5 氣液兩相之流動形態 29
圖2.6 粒子阻塞機制 30
圖3.1 掃流過濾系統實驗裝置圖 35
圖3.2 液體流量計校正圖 37
圖3.3 液體流量與液體速度(uL)之關係圖 37
圖3.4 氣體流量計校正圖 38
圖3.5 氣體流量與氣體速度(uG)之關係圖 38
圖3.6 平板型掃流過濾系統流體流量與雷諾數之關係圖 39
圖4.1 新鮮薄膜(PES 100k)濾速對透膜壓差作圖 50
圖4.2 液體速度對濾速之影響 50
(x0.8=50, ΔP=40kPa, θ=90°)
圖4.3 液體速度對濾速之影響 51
(x0.8=50, ΔP=40kPa, θ=180°)
圖4.4 氣體速度對濾速之影響 51
(x0.8=50, ΔP=40kPa, uL=0.025m/s, θ=90°)
圖4.5 氣體速度對濾速之影響 52
(x0.8=50, ΔP=40kPa, uL=0.025m/s, θ=180°)

圖4.6 氣體速度對濾速之影響 52
(x0.8=0, ΔP=40kPa, uL=0.025m/s, θ=180°)
圖4.7 氣體速度對濾速之影響 53
(x0.8=25, ΔP=40kPa, uL=0.025m/s, θ=180°)
圖4.8 氣體速度對濾速之影響 53
(x0.8=75, ΔP=40kPa, uL=0.025m/s, θ=180°)
圖4.9 氣體速度對濾速之影響 54
(x0.8=100, ΔP=40kPa, uL=0.025m/s, θ=180°)
圖4.10 不同粒徑組成其氣體速度對濾速之影響 54
(ΔP=40kPa, uL=0.025m/s, uG=0m/s, θ=180°)
圖4.11 不同粒徑組成其氣體速度對濾速之影響 55
(ΔP=40kPa, uL=0.025m/s, uG=0.009m/s, θ=180°)
圖4.12 不同粒徑組成其氣體速度對濾速之影響 55
(ΔP=40kPa, uL=0.025m/s, uG=0.017m/s, θ=180°)
圖4.13 不同粒徑組成其氣體速度對濾速之影響 56
(ΔP=40kPa, uL=0.025m/s, uG=0.026m/s, θ=180°)
圖4.14 操作壓差對濾速之影響 56
(x0.8=0, uL=0.025m/s, uG=0.026m/s, θ=180°)
圖4.15 操作壓差對濾速之影響 57
(x0.8=100, uL=0.025m/s, uG=0.026m/s, θ=180°)
圖4.16 不同粒徑組成其氣體速度對濾速之影響 57
(ΔP=60kPa, uL=0.025m/s, uG=0.026m/s, θ=180°)
圖4.17 液體速度對平均孔隙度之影響 58
(x0.8=50, ΔP=40kPa)
圖4.18 液體速度對平均過濾比阻之影響 58
(x0.8=50, ΔP=40kPa)

圖4.19 液體速度對濾餅阻力之影響 59
(x0.8=50, ΔP=40kPa)
圖4.20 氣體速度對平均孔隙度之影響 59
(x0.8=50, ΔP=40kPa, uL=0.025m/s)
圖4.21 氣體速度對平均過濾比阻之影響 60
(x0.8=50, ΔP=40kPa, uL=0.025m/s)
圖4.22 氣體速度對濾餅阻力之影響 60
(x0.8=50, ΔP=40kPa, uL=0.025m/s)
圖4.23 不同粒徑組成其氣體速度對平均孔隙度之影響 61
圖4.24 不同粒徑組成其氣體速度對平均過濾比阻之影響 61
圖4.25 不同粒徑組成其氣體速度對濾餅阻力之影響 62
圖4.26 不同粒徑組成其壓力對平均孔隙度之影響 62
圖4.27 不同粒徑組成其壓力對平均過濾比阻之影響 63
圖4.28 不同粒徑組成其壓力對濾餅阻力之影響 63
圖4.29 液體速度對濾餅之粒徑分佈影響 64
(x0.8=50, ΔP=40kPa, θ=90°)
圖4.30 液體速度對濾餅之粒徑分佈影響 64
(x0.8=50, ΔP=40kPa, θ=180°)
圖4.31 氣體速度對濾餅之粒徑分佈影響 65
(x0.8=50, uL=0.025m/s, ΔP=40kPa, θ=90°)
圖4.32 氣體速度對濾餅之粒徑分佈影響 65
(x0.8=50, uL=0.025m/s, ΔP=40kPa, θ=180°)
圖A.1 PES 100k薄膜 (1千倍剖面圖) 78
圖A.2 PES 100k薄膜 (1萬倍剖面圖) 78
圖A.3 PES 100k薄膜 (5萬倍剖面圖) 79
圖A.4 PES 100k薄膜 (5萬倍表面圖) 79
圖A.5 PES 100k薄膜 (10萬倍表面圖) 80
圖A.6 PES 100k薄膜 (20萬倍表面圖) 80


表目錄

表1.1 不同操作程序之驅動力分類 9
表2.1 薄膜程序對於分離溶質之區分表 26
表3.1 薄膜性質表 36
表3.2 液體流量計刻度與實際流量、掃流速度、雷諾數之關係 39
表3.3 雷射光散射儀之性質表 40
表4.1 液體速度對濾餅阻力之影響 45
表4.2 氣體速度對濾餅阻力之影響 45
表4.3 不同粒徑組成其氣體速度對濾餅阻力之影響 46
表4.4 不同粒徑組成其壓力對濾餅阻力之影響 47
表4.5 液體速度對濾餅粒徑分佈之影響 48
表4.6 氣體速度對濾餅粒徑分佈之影響 48
表4.7 壓力對濾餅粒徑分佈之影響 49
參考文獻 參考文獻

Amar, R.B., Gupta, B.B. and Jaffrin, M.Y., “Apple juice clarification using mineral membrane: gouling controled by backwashing and puslatile flow”, J. Chem. Eng. Sci. 21 (1966) 197
Baker, R.J., Fane, A.G., Fell, C.J.D. and Yoo, B.H., “Factors affecting flux in crossflow filtration”, Desalination .53 (1985) 81-96.
Bauser, H., Chmiel, H., Stroh, N. and Walitza, E., “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci. 27 (1986) 195-202.
Belfort, G., “Fluid mechanics in membrane filtration : Recent developments”, J. Membr. Sci. 40 (1989) 123-147.
Belfort, G., “Membrane Modules : Comparison of different configurations using fluid mechanics”, J. Membr. Sci. 35 (1988) 245-270.
Cabassud, C., Laborie, S. and Laine, J.M., “How slug flow can improve ultrafiltration flux in organic hollow fibers”, J. Membr. Sci. 128 (1997) 93-101.
Cabassud, C., Karim, E., Gaelle, D. and Alain, L., “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chem. Eng. Sci. 56 (2001) 6321-6327
Cheng, T.W. and Lin, C.T., “A study on cross-flow ultrafiltration with various membrane orientations”, Sep. Purif. Technol. 39 (2004) 13-22.
Cheng, T.W. and Li, L.N., “Gas-sparging cross-flow ultrafiltration in flat-plate membrane module : Effects of channel height and membrane inclination”, Sep. Purif. Technol. 55 (2007) 50-55.
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book” Technomic Publishing Company, Inc., Pennsylvania (1988)
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 (1985) 393-402.
Cui, Z.F. and Wright, K.I.T., “Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution”, J. Membr. Sci. 90 (1994) 183-189.
Fane, A.G., Fell, C.J.D. and Suki, A., “The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membr. Sci. 16 (1983) 195-210.
Fane, A.G., Fell, C.J.D. and Kim, K.J., “Effect of surfactant pretreatment on the ultrafiltration of proteins”, Desalination. 53, 1-3 (1985) 37-55.
Fell, C.J.D., Kim, K.J., Chem, V., Wiley, D.E. and Fane, A.G., “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27 (1990) 165-173.
Fischer, E. and Raasch, J., ”Cross-Flow Filtration”, Ger. Chem. Eng., 8 (1985) 211-230.
Gill, W.N., Wiley, D.E., Fell, C.J.D. and Fane, A.G., “Effect of Viscosity on Concentration Polarization in Ultrafiltration”, AIChE J. 34 (1988) 1563
Gupta, B.B., Howell, J.A., Wu, D. and Field, R.W., “A helical baffle for cross-flow microfiltration”, J. Membr. Sci. 99 (1995) 31-42.
Gupta, B.B., Blanpain, P. and Jaffrin, M.Y., “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membr. Sci. 70 (1992) 257-266.
Houi, D. and Lenormand, R., “Particle accumulation at the surface of the filter”, Filtration & Separation. 23 (1986) 238-241.
Jiraratananon, R., Uttapap, D. and Sampranpiboon, P., “Crossflow microfiltration of a colloidal suspension with the presence of macromolecules”, J. Membr. Sci. 140 (1998) 57-66.
Kim, B.S. and Chang, H.N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation 2 (1991) 9-23.
Kroner, K.H. and Nissinen, V., “Dynamic filtration of microbial suspensions using an axially rotating filter”, J. Membr. Sci. 36 (1988) 85-100.
Lee, C.K., Chang, W.G. and Ju, Y.H., “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotech. Bioeng. 41 (1993) 525-530.
Lu, W.M., Hwang, K.J. and Ju, S.C., “Studies on the mechanism of crossflow filtration”, Chem. Eng. Sci. 48 (1993) 863-876.
Mercier-Bonin, M., Fonade, C. and Lafforgue-Delorme, C., “How slug flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci. 128 (1997) 103-113.
Millward, H.R., Bellhouse, B.J. and Walker, G., “Screw-thread flow promoters : an experimental study of ultrafiltration and microfiltration performance”, J. Membr. Sci. 106 (1995) 269-279.
Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent. 4 (1983) 412.
Morel, G., Gracina, A. and Lachise, J., “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci. 56 (1991) 1-12.
Murkes, J., “ Carlsson, Crossflow Filtration-Theory and Paractice ” John Wiley & Sons, New York (1988).
Nabetani, H., Nakajima, M., Watanabe, A., Nakao, S. and Kimura, S., “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36 (1990) 907-915.
Nel, R.G., Oppenheim, S.F. and Rodgers, V.G.J., “Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10 (1994) 539-542.
Riesmeier, B., Kroner, K.H. and Kula, M.R., “Tangential filtration of microbial suspensions: resistance and model development”, J Biotechnol. 12,153(1989)
Ruchton, A. and Zhang, G.S., “Rotary microporous filtration”, Desalination. 70 (1988) 379-394
Taitel, Y., Bornea, D. and Dukler, A.E., “Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes”, AICHE. 26 (1980) 345-354
Taylor, G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil. Trans. Roy. Soc. A233 (1923) 298-343.
Tiller, F.M., Cramp, J.R.and Ville, F., “A revised approach to the theory of cake filtration”, Fine Particles Processing. 2 (1980) 1549-1558.
Van Der Weal, M.J. and Racz, I.G., “Mass transfer in corrugated-plate membrane modules : I. Hyperfiltration experiments”, J. Membr. Sci. 40 (1989) 243-260.
Vyas, H.K., Bennett, R.J. and Marshall, A.D., “Influence of feed properties on the membrane fouling in crossflow microfiltration of particulate suspensions”, International Dairy Journal. 10 (2000) 855-864.
Wakeman, R.J. and Tarleton, E.S., “Understanding flux delcline in crossflow microfiltration : Part I - Effect of particle and pores size”, Trans.IChem E. 71, Part A (1993) 399-410
Wang, S.S., “Effect of solution viscosity on ultrafiltration”, J. Membrane Sci. 39 (1988) 187
Winzeler, H.B. and Belfort, G., “Enhanced performance for pressure-driven membrane processes : The argument for fluid instabilities,” J. Membrane Sci. 80 (1993) 35
Youm, K.H., Fane, A.G. and Wiley, D.E., “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116 (1996) 229-241.
李培銘, “無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2006).
呂維明,呂文芳, “過濾技術,” 高立圖書有限公司 (1994).
呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
張玉琴, “掃流微過濾在微脂粒純化之應用”, 淡江大學化學工程與材料工程研究所碩士論文 (2002).
程永雄, “雙成份懸浮液之掃流微過濾”, 淡江大學化學工程與材料工程研究所碩士論文 (2001).
蔡焙土复,“沉浸式薄膜過濾系統中蛋白質結垢之探討”, 淡江大學化學
工程與材料工程研究所碩士論文 (2006).
吳雅茹, “通入氣泡以提升掃流微過濾之效能”, 淡江大學化學工程與
材料工程研究所碩士論文 (2006).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信