§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2607200713271200
DOI 10.6846/TKU.2007.00850
論文名稱(中文) 無機管式薄膜過濾蛋白質溶液之探討
論文名稱(英文) Investigation on the Filtration of Protein Solution by Inorganic Tubular Membrane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 林凱尉
研究生(英文) Kai-Wei Lin
學號 694360438
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-21
論文頁數 114頁
口試委員 指導教授 - 鄭東文
委員 - 蔡少偉
委員 - 葉和明
關鍵字(中) 薄膜結垢
等電點
阻隔率
通氣
關鍵字(英) Membrane fouling
Isoelectric point
Rejection
Gas-sparging
第三語言關鍵字
學科別分類
中文摘要
本研究以掃流式無機薄膜過濾系統探討在不同溶液性質及操作參數下之蛋白質溶液過濾行為與結垢現象,以尋求提升濾速之操作方式。實驗溶液為BSA與β-cyclodextrin之混合溶液,操作參數有透膜壓差、濃度、pH值、液體速度及氣體速度等,定量薄膜結垢之阻力,並建立濾速分析模式。
    實驗結果顯示,BSA溶液之濾速在等電點時較其它pH值為低,這是因此時BSA極化層結垢較為緊密所致;含有β-cyclodextrin之雙溶質系統,其濾速較純BSA溶液來得低,此因β-cyclodextrin可進入薄膜孔道形成內部結垢所致。雙溶質系統中薄膜對β-cyclodextrin之阻隔率隨溶液pH值不同而有所改變,在BSA等電點時β-cyclodextrin之阻隔率大於遠離BSA等電點之阻隔率。在低液體流速下,通入氣體可有效提升濾速,因氣泡可以增進對膜面之擾動。
    阻力計算結果顯示,β-cyclodextrin所產生之內部阻力大於BSA所形成之外部阻力。在雙溶質溶液中,由於BSA於膜面產生的結垢層阻擋了β-cyclodextrin透膜,使孔洞阻塞阻力值下降。以滲透壓模式計算理論濾速發現,理論濾速與實驗濾速趨勢相同。而在低液體速度時,實驗的濾速會比理論濾速高,可能是理論計算中低估膜面擾動所致。
英文摘要
In this study, the inorganic membranes were employed in a cross-flow filitration system to discuss the flux and fouling behavior of protein solutions under various solution properties and operating parameters, and to search the manner for increasing the flux. Mixture of BSA and β-cyclodextrin was selected as the testing solution and the operating parameters such as transmembrane pressure, solution concentration, pH value, liquid velocity and air velocity were considered to determine the membrane resistance and establish the model for flux analysis.
Experimental result indicates that the flux of BSA solution at its isoelectric point is lower than that at other pH values; this is due to a denser polarization layer formed at its isoelectric point. Because of the internal fouling ofβ-cyclodextrin, the flux of solution containing β-cyclodextrin is lower than that of pure BSA solution. In binary solutions, the β-cyclodextrin rejection by membrane varies with the change of pH value; the rejection of β-cyclodextrin at the isoelectric point of BSA is higher than that at the condition far away from the BSA isoelectric point. Under low liquid velocity, flux can be enchanced efficiently by gas-sparging due to gas slugs increase the turbulence at the membrane surface.
According to the resistance-in-series model, internal fouling by β-cyclodextrin is higher than the external fouling by BSA. When in binary solution, fouling layer formed by BSA on membrane surface could reject β-cyclodextrin transmembrane, and reduce internal fouling resistance. Estimation by the osmotic pressure model, the trend of theoretical flux agrees well with experiment flux. At low liquid velocity, the experiment flux is higher than theoretical flux, perhaps due to the underestimation of turbutance on the membrane surface.
第三語言摘要
論文目次
目錄

圖目錄																IV
表目錄		XII
第一章 序論														 1
  1.1 前言															 1
  1.2 薄膜分離														 2
  1.3 濃度極化與結垢現象											 4
  1.4 本研究之目標												 6
第二章 文獻回顧 													 9
  2.1薄膜超過濾之特性											 9
  2.2 蛋白質簡介 													 9
    2.2.1 蛋白質的酸鹼性 	9
    2.2.2 蛋白質的等電點 	10
    2.2 .3 蛋白質之相關研究                                 11
2.3 濃度極化與結垢現象									       13
  2.4 影響濾速之因素 												15
  2.5 提高濾速之方法 												16
  2.6 濾速分析模式 												22
第三章 實驗裝置與方法											34
  3.1 實驗裝置														34
  3.2 實驗藥品													 	34
  3.3 實驗步驟														35
  3.4 操作條件 													35
    3.4.1 系統操作條件 											35
    3.4.2 流量計校正與雷諾數計算 								36
  3.5 分析方法 													36
    3.5.1 分析儀器 												36
    3.5.2 BSA的分析方法與條件 									36
    3.5.3 β-cyclodextrin的分析方法與條件 						37
    3.5.4 阻隔率之計算 											37
  3.6 薄膜清洗 													38
第四章 結果與討論 												46
  4.1 薄膜純水濾速 												46
  4.2單溶質溶液													46
    4.2.1 液體速度之影響											46
    4.2.2 溶液pH值之影響										49
    4.2.3 曝氣之影響												50
    4.2.4 阻力分析 												51
  4.3 雙溶質溶液      											53
    4.3.1 液體速度之影響											53
    4.3.2 溶液pH值之影響										54
    4.3.3 曝氣之影響												55
    4.3.4 阻力分析 												56
  4.4 滲透壓模式 													56
    4.7.1 物性參數	 												58
    4.7.2 濾速估計 												59
第五章 結論
  5.1 液體速度的影響												97
  5.2 pH值對過濾行為的影響 										98
  5.3 曝氣的影響      											99
  5.4 阻力分析    												99
  5.5 滲透壓模式	100
  5.6 總結	101
符號說明	102
參考文獻	104
附錄	112


















圖目錄

圖1.1  薄膜分離程序之分類 										 7
圖1.2  (a)濾餅過濾及(b)掃流過濾示意圖 							 8
圖2.1  壓力對濾速之關係圖 										30
圖2.2  提高濾速之方法 											31
圖2.3  氣液兩相之流動型態圖										32
圖2.4  膠層極化之濃度分佈圖	33
圖3.1  管式陶瓷薄膜過濾實驗裝置圖 								39
圖3.2  TiO2薄膜介達電位隨著pH值之變化圖 						40
圖3.3  流體流量計校正圖(流量計A) 								40
圖3.4  流體流量與掃流速度(UL)之關係圖(流量計A)				41
圖3.5  管式單通道薄膜流體流量與雷諾數之關係圖(流量計A)		41
圖3.6  流體流量計校正圖(流量計B)          						42
圖3.7  流體流量與掃流速度(UL)之關係圖(流量計B)					42
圖3.8  管式單通道薄膜流體流量與雷諾數之關係圖(流量計B)		43
圖4.1  MWCO 1k Da薄膜純水濾速圖 								60
圖4.2  MWCO 5k Da薄膜純水濾速圖 								60
圖4.3  1k膜不同液體速度下之濾速變化圖
( BSA 2 kg/m3) 	              							61
圖4.4  1k膜不同BSA濃度下之濾速變化圖
(BSA 2~5 kg/m3, UL=1.3 m/s) 								61
圖4.5  1k膜不同BSA濃度下之濾速變化圖
(BSA 2~5 kg/m3, UL=0.3 m/s) 			       			62
圖4.6  薄膜MWCO不同下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 		                        62
圖4.7  薄膜MWCO不同下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 						          63
圖4.8  薄膜MWCO不同下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 		                        63
圖4.9  薄膜MWCO不同下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 									64
圖4.10  薄膜MWCO不同下β-cyclodextrin溶液之濾速變化圖
(β-cyclodextrin 3 kg/m3, UL=1.3 m/s) 						64
圖4.11  薄膜MWCO不同下β-cyclodextrin溶液之濾速變化圖
(β-cyclodextrin 3 kg/m3, UL=0.3 m/s) 						65
圖4.12  薄膜MWCO不同下β-cyclodextrin之阻隔率變化圖
(β-cyclodextrin 3 kg/m3, UL=1.3 m/s) 						65
圖4.13  薄膜MWCO不同下β-cyclodextrin之阻隔率變化圖
(β-cyclodextrin 3 kg/m3, UL=0.3 m/s) 						66
圖4.14  1k膜不同pH值下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 					    			66

圖4.15  薄1k膜不同pH值下BSA溶液之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 				              	67
圖4.16  1k膜曝氣與不曝氣下BSA溶液之濾速變化圖
(BSA 2 kg/m3, pH=7) 		                  			67
圖4.17  1k膜在pH=3下曝氣之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 				                 68
圖4.18  1k膜在pH=4.9下曝氣之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s)                           	68
圖4.19  1k膜在pH=7下曝氣之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s)                          	69
圖4.20  1k膜在pH=10下曝氣之濾速變化圖
(BSA 2 kg/m3, UL=0.3 m/s)                           	69
圖4.21  1k膜在不同掃流速度下之阻力變化圖
(BSA 2 kg/m3,pH=7) 	                               70
圖4.22  1k膜在不同掃流速度下之阻力變化圖
(β-cyclodextrin 3 kg/m3,pH=7) 	                	       70
圖4.23  1k膜在不同pH值下之阻力(Rtotal)變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 									71
圖4.24  1k膜在不同pH值下之阻力(Rtotal)變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 									71
圖4.25  1k膜在不同pH值下之阻力(Rf)變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 			    					72

圖4.26  1k膜在不同pH值下之阻力(Rf)變化圖
(BSA 2 kg/m3, UL=0.3 m/s)                          	72
圖4.27  1k膜在不同pH值下之阻力變化圖
(BSA 2 kg/m3, UL=1.3 m/s) 	                           73
圖4.28  1k膜在不同pH值下之阻力變化圖
(BSA 2 kg/m3, UL=0.3 m/s) 		             				73
圖4.29  1k膜曝氣與不曝氣之阻力變化圖
(BSA 2 kg/m3, pH=3) 										74
圖4.30  1k膜曝氣與不曝氣之阻力變化圖
(BSA 2 kg/m3, pH=4.9)										74
圖4.31  1k膜曝氣與不曝氣之阻力變化圖
(BSA 2 kg/m3, pH=7) 										75
圖4.32  1k膜曝氣與不曝氣之阻力變化圖
(BSA 2 kg/m3, pH=10)       							  	75
圖4.33  1k膜雙溶質溶液下改變BSA濃度之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 0~5 kg/m3, UL=1.3 m/s)   	76
圖4.34  1k膜雙溶質溶液下改變BSA濃度之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 0~5 kg/m3, UL=0.3 m/s) 	   76
圖4.35  1k膜雙溶質溶液下改變BSA濃度之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 0~5 kg/m3, UL=1.3 m/s)   	77
圖4.36  1k膜雙溶質溶液下改變BSA濃度之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 0~5 kg/m3, UL=0.3 m/s) 		77

圖4.37  1k膜雙溶質溶液不同液體流速之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3, UL=1.3 m/s,0.3m/s)	78
圖4.38  1k膜雙溶質溶液在不同pH值之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3, UL=1.3 m/s) 			78
圖4.39  1k膜雙溶質溶液在不同pH值之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3, UL=0.3 m/s) 			79
圖4.40  1k膜雙溶質溶液在不同pH值之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3, UL=1.3 m/s) 			79
圖4.41  1k膜雙溶質溶液在不同pH值之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3, UL=0.3 m/s) 			80
圖4.42  一次進料與分批進料下之濾速變化圖
(UL=0.3 m/s, pH=3) 		                        		80
圖4.43  一次進料與分批進料下之濾速變化圖
(UL=0.3 m/s, pH=4.9) 	                        			81
圖4.44  一次進料與分批進料下之濾速變化圖
(UL=0.3 m/s, pH=7) 			                        81
圖4.45  一次進料與分批進料下之濾速變化圖
(UL=0.3 m/s, pH=10) 		                         	82
圖4.46  一次進料與分批進料下之阻隔率變化圖
(UL=0.3 m/s, pH=3) 		                        		82
圖4.47  一次進料與分批進料下之阻隔率變化圖
(UL=0.3 m/s, pH=4.9) 			                        83

圖4.48  一次進料與分批進料下之阻隔率變化圖
(UL=0.3 m/s, pH=7) 		                        		83
圖4.49  一次進料與分批進料下之阻隔率變化圖
(UL=0.3 m/s, pH=10) 			                        84
圖4.50  1k膜在pH=3下曝氣之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			84
圖4.51  1k膜在pH=4.9下曝氣之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			85
圖4.52  1k膜在pH=7下曝氣之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			85
圖4.53  1k膜在pH=10下曝氣之濾速變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			86
圖4.54  1k膜在pH=3下曝氣之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			86
圖4.55  1k膜在pH=4.9下曝氣之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			87
圖4.56  1k膜在pH=7下曝氣之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			87
圖4.57  1k膜在pH=10下曝氣之阻隔率變化圖
(β-cyclodextrin 3 kg/m3 + BSA 2 kg/m3,UL=0.3 m/s) 			88
圖4.58  1k膜在不同掃流速度下之阻力變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3 , pH=7)	88

圖4.59  1k膜在不同pH值下之阻力(Rtotal)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=1.3 m/s) 			89
圖4.60  1k膜在不同pH值下之阻力(Rtotal)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=0.3 m/s) 			89
圖4.61  1k膜在不同pH值下之阻力(Rf)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=1.3 m/s) 			90
圖4.62  1k膜在不同pH值下之阻力(Rf)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=0.3 m/s) 			90
圖4.63  1k膜在不同pH值下之阻力(Rp)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=1.3 m/s) 			91
圖4.64  1k膜在不同pH值下之阻力(Rp)變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3,UL=0.3 m/s) 			91
圖4.65  1k膜曝氣與不曝氣之阻力變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3 , pH=3) 			   	92
圖4.66  1k膜曝氣與不曝氣之阻力變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3, pH=4.9) 			   	92
圖4.67  1k膜曝氣與不曝氣之阻力變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3, pH=7) 				93
圖4.68  1k膜曝氣與不曝氣之阻力變化圖
(β-cyclodextrin 3 kg/m3+ BSA 2 kg/m3, pH=10) 				93
圖4.69  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 1k, BSA 2 kg/m3, UL=0.3~1.3 m/s) 					94

圖4.70  滲透壓模式下理論與實驗濾速比較圖
(MWCO 1k, BSA 2 kg/m, UL=1.3 m/s) 						94
圖4.71  滲透壓模式下理論與實驗濾速比較圖
(MWCO 1k, BSA 2 kg/m, UL=0.3 m/s) 						95
圖4.72  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 5k, BSA 2 kg/m3, UL=0.3~1.3 m/s) 					95
圖4.73  滲透壓模式下理論與實驗濾速比較圖
(MWCO 5k, BSA 2 kg/m, UL=1.3 m/s) 						96
圖4.74  滲透壓模式下理論與實驗濾速比較圖
(MWCO 5k, BSA 2 kg/m, UL=0.3 m/s) 						96

圖A-1  BSA檢量線	112
圖B-1  β-cyclodextrin檢量線	114













表目錄

表1.1  不同操作程序之驅動力分類 								 7
表3.1  薄膜性質說明 												44
表3.2  BSA特性說明 												44
表3.3  流量計A刻度與實際流量、掃流速度、雷諾數之關係 		44
表3.4  流量計B刻度與實際流量、掃流速度、雷諾數之關係 		45
表4.1  各薄膜純水透過率及薄膜阻力 								46
參考文獻
參考文獻

Bansal, B., R. Al-Ali, R. Mwrcade-Prieto, X.D. Chen, “Rinsing and clean -ing of α-lactalbumin fouled MF membranes”, Sep. Purif. Technol. 48 (2006) 202-207.
Bargeman, G., J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroen, R.M. Boom, “Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention”, J. Membr. Sci. 247 (2005) 11-20.
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci. 27 (1986) 195-202.
Belfort, G., ”Membrane modules: comparison of different configurations using fluid mechanics”, J. Membr. Sci., 35, (1988) 245-270.
Belfort, G., ”Fluid mechanics in membrane filtration: recent deve -lopments”, J. Membr. Sci. 40 (1989) 123-147
Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, “Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control technique”, in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York, (1970), p. 47.
Bowen, W.R., J.S. Welfoot, “Modelling the performance of membrane nanofiltration–critical assessment and model development”, Chem. Eng. Sci. 57 (2002) 1121-1137.
Bowen, W.R., J.S. Welfoot, “Modelling of membrane nanofiltration–pore size distribution effects”, Chem. Eng. Sci. 57 (2002) 1393-1407.
Cabassud, C., S. Laborie, J.M. Laine, “How slug flow can improve ultra -filtration flux in organic hollow fibers”, J. Membr. Sci. 128 (1997) 93-101.
Cabassud, C., E. Karim, D. Gaelle, L. Alain, “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chem. Eng. Sci. 56 (2001) 6321-6327
Cheng, T.W., H.M. Yeh, C.T. Gau, “Flux analysis by modified osmotic -pressure model for laminar ultrafiltration of macromolecular solutions”, Sep. Purif. Technol. 13 (1998) 1-8.
Cheng, T.W., C.T. Lin, “A study on cross-flow ultrafiltration with various membrane orientations”, Sep. Purif. Technol. 39 (2004) 13-22.
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, 2nd ed., Technomic Publishing Co. Inc. Pennsylvania (1998).
Cheryan, M., R. Shukla, “Performance of ultrafiltration membrane in ethanol-water solution: effect of membrane conditioning” J. Membr. Sci. 198 (2002) 75-85.
Chong, R., P. Jelen, W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 (1985) 393-402.
Cui, Z.F., K.I.T. Wright, “Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution”, J. Membr. Sci. 90 (1994) 183-189.
Cui, Z.F., K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, J. Membr. Sci. 117 (1996) 109-116.
Derzansky, L.J., W.N. Gill, “Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane”, AIChE J. 20 (1974) 751-761.
Dharmesh M. Kanani, Raja Ghosh, Carlos D.M. Filipe, “A novel approach for high-resolution protein–protein separation by ultrafiltration using a dual-facilitating agent.”, J. Membr. Sci. 243 (2004) 223-228
Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, “Colori -metric method for determination of sugars and related substances”, Anal. Chem. 28 (1956) 350-356.
Fane, A. G., C.J.D. Fell, A. Suki, “Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membr. Sci. 16 (1982) 195-210.
Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27 (1990) 165-173.
Ghosh, R., Q. Li, Z.F. Cui, ” “Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging”, AIChE J. 44 (1998) 61-67.
Ghosh, R., Z.F. Cui, “Fractionation of BSA and lysozyme using ultra -filtration: effect of pH and membrane pretreatment”, J. Membr. Sci. 139 (1998) 17-28.
Ghosh, R., Z.F. Cui, “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, J. Membr. Sci., 162 (1999) 91-102.
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membr. Sci. 70 (1992) 257-266.
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, “A helical baffle for cross -flow microfiltration”, J. Membr. Sci. 99 (1995) 31-42.
Hidetoshi, M., Y.C. Chen, Y. Ryotaro, K. Yuichi, M. Mie , T. Akihiko, “Membrane potentials across nanofiltration membranes:effect of
nanoscaled cavity structure”, J. Molecular Structure. 739 (2005) 99-104.
Ho, C.C., A. L. Zydeny, “A combined pore blockage and cake filtration model for protein fouling during microfiltration”, J. Colloid Interface Sci. 232 (2000) 389-399.
Huisman, I.H., P. Pradanos, A. Hernandez, “The effect of protein-protein and protein-membrane interactions on membrane fouling in ultra -filtration”, J. Membr. Sci. 179 (2000) 79-90.
Iritani, E.J., Y.T. Mukai, T.R. Murase, “Separation of binary protein mixtures by ultrafiltration”, Filtration & Separation. 34 (1997) 967-973.
Karthik, V., S. DasGupta, S. De, “Modelling and simulation of osmotic pressure controlled electro-ultrafiltration in a cross-flow system”, J.  Membr. Sci. 199 (2002) 29-40.
Kedem, O., A. Katchalsky, “A physical interpretation of the phenomenological coefficients of membrane permeability”, J. Gen. Physiol. 45 (1961) 143-179.
Kelly, S.T., A.L. Zydney, “Effects of intermolecular thiol-disulfide interchange reactions on BSA fouling during microfiltration”, Biotechnol. Bioeng. 44 (1994) 972-982.
Kelly, S.T., A.L. Zydney, “Mechanisms for BSA fouling during microfiltration”, J. Membr. Sci. 107 (1995) 115-127.
Kim, B.S., H.N. Chang, “Effects of periodic backflushing on ultra -filtration Performance”, Bioseparation, 2 (1991) 9-23.
Kimura, S., S. Sourirajan, “Analysis of data in reverse osmosis with porous celluloses acetate membranes used”, AIChE J. 13 (1967) 497-503.
Kroner, K.H., V. Nissinen, “Dynamic filtration of microbial suspensions using an axially rotating filter”, J. Membr. Sci. 36 (1988) 85-100.
Lee, C.K., W.G. Chang, Y.H. Ju, “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotech. Bioeng. 41 (1993) 525-530.
Li, S.L., C Li, Y.S. Liu, X.L. Wang, Z.A. Cao, “Separation of L- glutamine from fermentation broth by nanofiltration”, J. Membr. Sci. 222 (2003) 191-201.
Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, “How slug flow can enhance the ultrafiltration flux in mineral tubular membrane”, J.  Membr. Sci. 128 (1997) 103-113.
Mericier-Bonin, M., C. Lagane, C. Fonade, “Influence of a gas /liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, J. Membr. Sci. 180 (2000) 93-102.
Millward, H.R., B.J. Bellhouse, G. Walker, “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, J. Membr. Sci., 106 (1995) 269-279.
Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent. 4 (1983) 412.
Morel, G., A. Gracina, J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci. 56 (1991) 1-12.
Moritz, T., S. Benfer, P. Arki, G. Tomandl, “Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic Membranes”, Sep. Purif. Technol. 25 (2001) 501-508.
Mulder, M., “Basic principle of membrane technology”, Kluwer Academic Publishers. Taiwan (1991).
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36 (1990) 907-915.
Nakao, S., X.L. Wang, T. Tsuru, M. Togoh, S. Kimura, ”Transport of organic electrolytes with electrostatic and sterichidrance effects through nanofiltration membranes”, J. Chem. Eng. Jpn. 28 (1995) 372-380.
Nel, R. G., S. F. Oppenheim, V.G.J. Rodgers, “Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10 (1994) 539-542.
Palacio, L., C.C. Ho, P. Pradaos, A. Hernandez, A. L. Zydeny., “Fouling with protein mixtures in microfilration: BSA-lysozyme and BSA  -pepsine”, J. Membr. Sci. 222 (2003) 41-51.
Persson, A., Ann-Sofi Jonsson, G. Zacchi, “Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration”, J. Membr. Sci. 223 (2003) 11-21.
Philles, G.D., G.B. Benedek, N.A. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy”, J. Chem. Phys. 65 (1976) 1883.
Porter, M.C., “Handbook of industrial membrane technology”, Noyes Publications. USA (1990).
Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, “Model of convection-diffusion-electrophoretic migration application to UF of  lysozyme versus pH and ionic strength”, in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).
Schafer, A.I., A.G. Fane, T.D. Waite, “Nanofiltration-Principles and Applications”, Elservier Inc. USA (2005).
Smith, S.R., Cui, Z.F.,” Gas-slug enhanced hollow fibre ultrafiltration—an experimental study” , J. Membr. Sci., 242 (2004) 117-128.
Taylor, G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil. Trans. Roy. Soc. A233 (1923) 298.
Taha Taha, Cui, Z.F., “CFD modelling of gas-sparged ultrafiltration
in tubular membranes”, J. Membr. Sci., 210 (2002) 13-27.
Van Der Weal, M. J., I.G. Racz, “Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments”, J. Membr. Sci., 40 (1989) 243-260.
Vera, L., S. Delgado, S. Elmaleh, “Dimensionless numbers for the steady -state flux of cross-flow microfiltration and ultrafiltration with gas sparging”, Chem. Eng. Sci. 55 (2000a) 3419-3428.
Vera, L., R. Villarroel, S. Delgado, S. Elmaleh, “Enhancing micro -filtration through an inorganic tubular membrane by gas sparging”, J. Membr. Sci. 165 (2000b) 47-27.
Winzeler, H.B., G. Belfort, “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80 (1993) 35-47.
Yeh, H.M., “Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules”, Sep. Sci. Technol. 31 (1996) 201-211.
Youm, K.H., A.G. Fane, D.E. Wiley, “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116 (1996) 229-241.
Zydeny, A.L., M.F. Ebersold, “The effect of membrane properties on the separation of protein charge variants using ultrafiltration”, J. Membr. Sci. 243 (2004) 379-338.
呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
林世龍, “氣液兩相管式薄膜超過濾系統中流態與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2002).
林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2004).
李培銘, “無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2006).
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信