§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2606201522204500
DOI 10.6846/TKU.2015.00905
論文名稱(中文) 以靜電紡絲技術回收保麗龍再製成離子交換濾材的可行性研究
論文名稱(英文) Feasibility study of applying electrospinning to recycle waste polystyrene into ion exchange membrane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 陳浩東
研究生(英文) Hao-Tung Chen
學號 602480393
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-03
論文頁數 90頁
口試委員 指導教授 - 陳俊成
委員 - 張章堂
委員 - 林文印
關鍵字(中) 聚苯乙烯
保麗龍
靜電紡絲
磺酸化
離子交換能力
重金屬去除能力
關鍵字(英) Polystyrene
Waste Polystyrene
electro-spinning
sulfonation
ion exchange capacity
Heavy Metal Removal
第三語言關鍵字
學科別分類
中文摘要
本研究探討以回收保麗龍為材料,經靜電紡絲程序製成離子交換濾材的可行性。探討內容包括比較聚苯乙烯與保麗龍為材料再製纖維濾材,靜電紡絲程序考慮參數包括溶解聚苯乙烯及保麗龍溶劑中四氫呋喃(THF)和二甲基甲酰胺(DMF)的混合比例,聚合物溶液濃度、聚合物溶液注射流量、施加電壓與噴頭與收集板距離。以小於300nm靜電紡纖維直徑為目標,最佳靜電紡絲程序操作條件為聚苯乙烯溶液濃度50 g/l、供電電壓12 KV、進料速率1.0 ml/h及間隙距離5 cm,得到靜電紡絲纖維直徑為253 nm,將相同條件應用於保麗龍得到靜電紡絲纖維直徑為443 nm。再以纖維浸泡的磺酸化程序使磺酸根基接附於纖維支鏈,使纖維活化具離子交換能力及重金屬去除能力。纖維樣品依不同磺酸化時間(5、10、20、40和80分鐘),依序浸泡在98%、70%、50%、25%和5%的硫酸溶液,最後在DI水中洗滌,利用傅立葉紅外線光譜儀(FTIR)鑑定纖維支鏈上的磺酸根基,確認聚苯乙烯及保麗龍靜電紡絲纖維在磺酸化時間為10分鐘及20分鐘SO3H接附程度最明顯。透過酸鹼滴定實驗得到靜電紡絲纖維的離子交換能力(IEC),得出聚苯乙烯及保麗龍靜電紡絲纖維最佳離子交換能力發生在磺酸化時間10分鐘,分別為32.91與27.65(m.mol/g) 。最後再進行靜電紡絲纖維對水溶液中銅離子的去除實驗,得出聚苯乙烯及保麗龍靜電紡絲纖維的最佳銅離子去除能力,分別發生在磺酸化時間20分鐘及10分鐘,銅離子去除率分別為18.17與57.09(mg Cu2+/g)。本研究證實以回收保麗龍作為靜電紡絲纖維材料,所製作的靜電紡絲纖維經磺酸化後可作為離子交換濾材,用於去除水中的重金屬。
英文摘要
This study is focused on the Feasibility study of applying electrospinning to recycle waste polystyrene into ion exchange membrane. Discussion includes comparison of polystyrene and waste polystyrene materials reconstituted fiber filters. Electrospinning program parameters considered include dissolved polystyrene and waste polystyrene solvent tetrahydrofuran (THF) and dimethylformamide (DMF) the mixing ratio, polymer concentration in the solution, the polymer solution injection flow rate, applied voltage and the needle and from the collection plate. Electrospinning fibers of less than 300nm in diameter is target. Through the results, Polymer solution concentration 50 g / l, supply voltage 12 KV, flow rate 1.0 ml / h and the gap distance 5 cm is the Polystyrene electrospun fiber optimum operating conditions. Get polystyrene electrospun fiber diameter of 253 nm. The above polystyrene optimum operating conditions applied directly waste polystyrene, Get electrospun fiber diameter of 443 nm. Use immersion sulfonated program make sulfonate attached to the fiber branched. The fibers will have an ion exchange capacity and heavy metal removal capability. Sulfonated fiber samples depending on the time (5,10,20,40 and 80 minutes) sequentially immersed in 98%, 70%, 50%, 25% and 5% sulfuric acid solution. The final rinse was done in DI water.Fourier infrared spectroscopy (FTIR) to identify sulfonate on fiber branched chain. Polystyrene and waste polystyrene electrospun fibers sulfonate time was 10 minutes and 20 minutes SO3H then attach the most obvious level. By acid-base titration to calculate the ion exchange capacity (IEC). Polystyrene and waste polystyrene electrospun fiber optimum ion exchange capacity of sulfonated occurred 10 minutes, respectively, 32.91 and 27.65 (m.mol / g). Finally, electrostatic spinning fiber removal experiment copper ions in aqueous solution, obtained polystyrene and Styrofoam electrospun fibers optimum copper ion removal capacity. Which occurred at 20 minutes and sulfonated 10 minutes, copper ion removal rates were 18.17 and 57.09 (mg Cu2 + / g).This study demonstrates that in order to recover waste polystyrene as electrostatic spinning fiber materials, After the manufactured electrospun fibers with sulfonated.It can be used as ion exchange filters, for the removal of heavy metals in water.
第三語言摘要
論文目次
目錄
圖目錄	IV
表目錄	VI
第一章 前言	1
1-1 研究起源	1
1-2 研究目的	3
第二章  文獻回顧	4
2-1廢棄發泡聚苯乙烯回收處理	4
2-1-1物理再生法	5
2-1-2化學改質法	5
2-2靜電紡絲	6
2-2-1靜電紡絲原理	6
2-2-2影響靜電紡絲纖維品質的因素	7
2-2-2-1聚合物分子量	7
2-2-2-2 紡絲溶液濃度	7
2-2-2-3聚合物溶劑	8
2-2-2-4 導電度	8
2-2-2-5 表面張力	9
2-2-2-6 黏度	9
2-2-2-7揮發性	9
2-2-2-8供電電壓	10
2-2-2-9進料速率	10
2-2-2-10間隙距離	10
2-2-2-11 溫度	11
2-2-2-12 濕度	11
2-2-3靜電紡絲應用實例	15
2-3 磺酸化	18
2-3-1磺酸化原理	18
2-4 重金屬	19
2-4-1 銅	19
2-4-2 鎘	19
2-4-3 鋇	20
2-4-4 鋅	20
2-5 重金屬廢水處理方法	20
2-5-1 活性汙泥法	20
2-5-2 化學沉澱	20
2-5-3 混凝	21
2-5-4 吸附	21
2-5-5 離子交換	21
2-5-5-1 離子交換原理	22
2-5-5-2 離子交換薄膜及特性	22
2-5-5-3離子交換薄膜的應用	24
第三章  實驗材料與方法	25
3-1 研究方法	25
3-2 實驗儀器	27
3-2-1 針筒注射泵浦及注射針筒	28
3-2-2高電壓直流電源供應器	28
3-2-3 傅立葉紅外線光譜儀(FTIR)	29
3-2-4原子吸收光譜儀(AA)	29
3-2-5 掃描式電子顯微鏡(SEM)	30
3-2-6電磁加熱攪拌器	30
3-2-7電子四位數天秤	30
3-2-8酸鹼度計	30
3-3 實驗藥品	31
3-3-1 聚苯乙烯	32
3-3-2 發泡聚苯乙烯(保麗龍)	32
3-3-3四氫呋喃及二甲基甲酰胺	32
3-3-4鹽酸	33
3-3-5硫酸	33
3-3-6酚肽指示液	33
3-3-7氯化鈉	33
3-3-8氫氧化納	33
3-3-9硫酸銅	33
3-4 實驗流程與方法	34
3-4-1 靜電紡絲材料特性程序	34
3-4-2 靜電紡絲程序	35
3-4-3 Image J軟體操作方法:	37
3-4-4 靜電紡絲磺酸化程序	40
3-4-5 官能基分析	41
3-4-6 離子交換能力實驗	42
3-4-7 銅離子去除能力實驗	44
第四章  結果與討論	47
4-1靜電紡絲程序	47
4-1-1聚合物濃度對靜電紡絲的影響	48
4-1-2供電電壓對靜電紡絲的影響	52
4-1-3進料速率對靜電紡絲的影響	60
4-1-4間隙距離對靜電紡絲的影響	67
4-1-5聚苯乙烯與保麗龍之靜電紡絲纖維比較	70
4-2磺酸化程序	72
4-2-1 磺酸化程序前後的靜電紡絲纖維物理結構差異	73
4-2-2 磺酸化程序前後的靜電紡絲纖維化學結構差異	75
4-3離子交換程序	78
4-4銅離子去除程序	81
第五章  結論與建議	84
5-1 結論	84
5-2 建議	86
圖目錄
圖 1-1 中華民國103年度各廢塑膠容器回收(行政院環境保護署)	2
圖 2-1聚合物以靜電紡絲製成奈米纖維的設備示意圖(LI, ZHAO, & SONG, 2010)	6
圖 2-2  NAFION化學結構式	18
圖 2-3  聚苯乙烯磺酸化結構式	19
圖 2-4離子交換薄膜的多元化工業應用(NAGARALE ET AL., 2006)	24
圖 3-1廢棄保麗龍再製離子交換濾膜之實驗流程圖	26
圖 3-2針筒注射泵浦及注射針筒	28
圖 3-3高電壓直流電源供應器	28
圖 3-4傅立葉紅外線光譜儀	29
圖 3-5原子吸收光譜儀	29
圖 3-6掃描式電子顯微鏡	30
圖 3-7聚苯乙烯化學結構式	32
圖 3-8 廢棄保麗龍	32
圖 3-9靜電紡絲材料特性程序流程圖	34
圖 3-10靜電紡絲製備照片	35
圖 3-11 IMAGE J軟體操作方法-設定比例尺大小及單位	37
圖 3-12尋找最小紡絲纖維直徑流程圖	38
圖 3-13 掃描式電子顯微鏡操作流程圖	39
圖 3-14 磺酸化程序流程圖	40
圖 3-15 離子交換程序實驗流程圖	43
圖 3-16銅離子去除能力流程圖	46
圖 4-1聚合物濃度對產出纖維直徑的影響(間隙距離5 CM)	48
圖 4-2聚合物濃度對產出纖維直徑的影響(間隙距離4.5 CM)	49
圖 4-3聚合物濃度對產出纖維直徑的影響(間隙距離5.5CM)	49
圖 4-4 不同聚合物濃度(50 G/L,100 G/L)與間隙距離(4.5,5,5.5 CM)產出圖	52
圖 4-5 不同供電電壓與間隙距離對纖維直徑的影響(進料速率1.0 ML/H)	53
圖 4-6不同供電電壓與間隙距離對纖維直徑的影響(進料速率0.5 ML/H)	54
圖 4-7 不同供電電壓(10KV~25KV)與間隙距離(4.5 CM)在進料速率	57
圖 4-8 不同供電電壓(10KV~25KV)與間隙距離(5 CM)在進料速率	58
圖 4-9 不同供電電壓(10KV~25KV)與間隙距離(5.5 CM)在進料速率	59
圖 4-10進料速率與間隙距離對產出纖維直徑的影響比較(供電電壓12KV)	60
圖 4-11進料速率與間隙距離對產出纖維直徑的影響比較(供電電壓15KV)	61
圖 4-12 不同進料速率(1.0ML/H~2.5ML/H)與供電電壓(12KV)在間隙距離	64
圖 4-13 不同進料速率(1.0ML/H~2.5ML/H)與供電電壓(15KV)在間隙距離	65
圖 4-14不同進料速率所形成串珠之SEM圖	67
圖 4-15 間隙距離之纖維直徑比較	68
圖 4-16 不同間隙距離(4.5,5,5.5 CM)在供電電壓(12,15KV)產出	70
圖 4-17聚苯乙烯與保麗龍的最小纖維直徑SEM圖	72
圖 4-18磺酸化後纖維物理結構之SEM圖	74
圖 4-19聚苯乙烯之FTIR掃描圖(全掃描)	75
圖 4-20聚苯乙烯之FTIR掃描圖(局部放大)	76
圖 4-21保麗龍之FTIR掃描圖(全掃描)	77
圖 4-22保麗龍之FTIR掃描圖(局部放大)	77
圖 4-23以聚苯乙烯及保麗龍為材料所製纖維的離子交換能力比較	78
圖 4-24以聚苯乙烯及保麗龍為材料所製纖維的銅離子去除能力比較	81
表目錄
表 2-1影響靜電紡絲纖維品質的因素(溶液性質)	12
表 2-2影響奈米纖維品質的因素(靜電紡絲操作參數)	13
表 2-3 影響奈米纖維品質的因素(操作環境)	14
表 2-4 靜電紡絲實例使用參數彙整表	17
表 3-1 實驗儀器	27
表 3-2 實驗儀器	31
表 3-3 離子交換能力計算式	42
表 3-4 銅離子去除計算式	45
表 4-1 不同聚合物濃度(50 G/L, 100 G/L)與間隙距離產出纖維直徑比較表	50
表 4-2 不同聚合物濃度(50 G/L, 100 G/L)、間隙距離與供電電壓產出的纖	51
表 4-3 不同進料速率(0.5 ML/H, 1.0 ML/H)、間隙距離與供電電壓產出的纖	55
表 4-4 不同進料速率(0.5 ML/H, 1.0 ML/H)、間隙距離與供電電壓產出的纖	56
表 4-5 供電電壓對纖維直徑影響結果	56
表 4-6 進料速率、間隙距離與供電電壓對纖維直徑的影響	62
表 4-7 不同間隙距離(4.5,5 CM)、供電電壓(12KV,15KV)與進料速率產出	62
表 4-8不同間隙距離(4.5,5 CM)、供電電壓(12KV,15KV)與進料速率產出	63
表 4-9 不同間隙距離在聚合物溶液濃度50 G/L、進料速率1.0 ML/H、供	69
表 4-10 以聚苯乙烯與保麗龍為材料產出的最小纖維直徑比較表	71
表 4-11 以聚苯乙烯為材料在不同磺酸化時間的離子交換能力比較表	79
表 4-12 以保麗龍為材料在不同磺酸化時間的離子交換能力比較表	80
表 4-13 聚苯乙烯纖維在不同磺酸化時間的水中銅離子去除能力比較	81
表 4-14 保麗龍不同磺酸化時間之銅離子去除結果	82
表 4-15 離子交換程序之磺酸化前後之纖維重量差異	83
表 4-16 銅離子去除能力之磺酸化前後之纖維重量差異	83
參考文獻
(1)	2012 EPS Recycling Rate Report; Alliance of Foam Packaging Recyclers; Crofton 2012. 
(2)	Alyuz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482-488.
(3)	An, H., Shin, C., & Chase, G. G. (2006). Ion exchanger using electrospun polystyrene nanofibers. Journal of Membrane Science, 283(1–2), 84-87.
(4)	Andrady, A., L. (2008). Science and Technology of Polymer Nanofibers. Hoboken, New Jersey: A John Wiley & Sons, Inc. Publication.
(5)	Baker, S. C., Atkin, N., Gunning, P. A., Granville, N., Wilson, K., Wilson, D., & Southgate, J. (2006). Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 27(16), 3136-3146.
(6)	Balster, J., Krupenko, O., Punt, I., Stamatialis, D. F., & Wessling, M. (2005). Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone). Journal of Membrane 
(7)	Balakrishnan, R. K., & Guria, C. (2007). Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Polymer Degradation and Stability, 92(8), 1583-1591.
(8)	Buchko, C. J., Chen, L. C., Shen, Y., & Martin, D. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40(26), 7397-7407.
(9)	Choi, Y., Kang, M., & Moon, S. (2002). A new preparation method for cation-exchange membrane using monomer sorption into reinforcing materials. Desalination, 146(1–3), 287-291.
(10)	Darrell H Reneker and,Iksoo Chun. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216.
(11)	Desilva, F. J. (1999). Essentials of ion exchange, in: Proceedings of the 25th Annual WQA Conference, Fort Worth, TX, March 17, Water Quality Association, Lisle, IL.
(12)	Demir, M. M., Yilgor, I., Yilgor, E. E. A., & Erman, B. (2002). Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309.
(13)	Eckenfelder, W. W., Jr. 1989. Industrial Water Pollution Control, McGraw-Hill, New York.
(14)	Ergenekon, P., Gurbulak, E., & Keskinler, B. (2011). A novel method for sulfonation of microporous polystyrene divinyl benzene copolymer using gaseous SO2 in the waste air streams. Chemical Engineering and Processing: Process Intensification, 50(1), 16-21.
(15)	Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., & Ismail, A. F. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102(0), 118-135.
(16)	Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
(17)	Friedrich, H. 1962. Ion Exchange. McGraw-Hill, New York.
(18)	Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418.
(19)	Gibson, P., Schreuder-Gibson, H., & Rivin, D. (2001). Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188(0), 469-481.
(20)	Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Supaphol, P. (2005). Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal, 41(3), 409-421.
(21)	Jia, H., Zhu, G., Vugrinovich, B., Kataphinan, W., Reneker, D. H., & Wang, P. (2002). Enzyme‐carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress, 18(5), 1027-1032.
(22)	Katsou, E., Malamis, S., & Haralambous, K. J. (2011). Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 82(4), 557-564.
(23)	Kang, S., Lee, J., Moon, S., & Kim, K. (2004). Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 56(2), 141-147.
(24)	Kessick, R., Fenn, J., & Tepper, G. (2004). The use of AC potentials in electrospraying and electrospinning processes. Polymer, 45(9), 2981-2984.
(25)	Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3), 493-497.
(26)	Laukaitis, A., Žurauskas, R., & Kerien, J. (2005). The effect of foam polystyrene granules on cement composite properties. Cement and Concrete Composites, 27(1), 41-47.
(27)	Lanouette, K. H., & Paulson, E. G. (1976). Treatment of heavy metals in wastewater. Pollution Engineering (October).
(28)	Lee, K. H., Kim, H. Y., Bang, H. J., Jung, Y. H., & Lee, S. G. (2003). The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 44(14), 4029-4034. 
(29)	Li, F., Zhao, Y., & Song, Y. (2010). Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning.
(30)	Matsumoto, H., Wakamatsu, Y., Minagawa, M., & Tanioka, A. (2006). Preparation of ion-exchange fiber fabrics by electrospray deposition. Journal of Colloid and Interface Science, 293(1), 143-150.
(31)	MacDiarmid, A., Jones, W., Norris, I., Gao, J., Johnson, A., Pinto, N., Okuzaki, H. (2001). Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals, 119(1-3), 27-30.
(32)	Megelski, Silke, et al. "Micro-and nanostructured surface morphology on electrospun polymer fibers." Macromolecules 35.22 (2002): 8456-8466.
(33)	Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 119(2–3), 97-130.
(34)	Orler, E. B., Gummaraju, R. V., Calhoun, B. H., & Moore, R. B. (1999). Effect of preferential plasticization on the crystallization of lightly sulfonated syndiotactic polystyrene ionomers. Macromolecules, 32(4), 1180-1188.
(35)	Ramaswamy, S., Clarke, L. I., & Gorga, R. E. (2011). Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites. Polymer, 52(14), 3183-3189.
(36)	Russell, T., Lin, Z., Schaffer, E., & Steiner, U. (2003). Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers and Polymers, 4(1), 1-7.
(37)	Sanders, J. D. (2011). Polystyrene Processing Apparatus and Method.
(38)	Savari, S., Sachdeva, S., & Kumar, A. (2008). Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes. Journal of Membrane Science, 310(1–2), 246-261.
(39)	Sen, R., Zhao, B., Perea, D., Itkis, M. E., Hu, H., Love, J., Haddon, R. C. (2004). Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Letters, 4(3), 459-464.
(40)	Shin, C., Chase, G. G., & Reneker, D. H. (2005). Recycled expanded polystyrene nanofibers applied in filter media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262(1–3), 211-215.
(41)	Shin, C., & Chase, G. G. (2005). Nanofibers from recycle waste expanded polystyrene using natural solvent. Polymer Bulletin, 55(3), 209-215. 
(42)	Shin, J., Chang, B., Kim, J., Lee, S., & Suh, D. H. (2005). Sulfonated polystyrene/PTFE composite membranes. Journal of Membrane Science, 251(1–2), 247-254.
(43)	Shin, K. S., Choi, E. M., & Hwang, T. S. (2010). Preparation and characterization of ion-exchange membrane using sty/HEA/LMA terpolymer via post-sulfonation. Desalination, 263(1–3), 151-158.
(44)	Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 151(1), 1-8.
(45)	Wannatong, L., Sirivat, A., & Supaphol, P. (2004). Effects of solvents on electrospun polymeric fibers: Preliminary study on polystyrene. Polymer International, 53(11), 1851-1859.
(46)	Xu, Y., Xie, Z., & Xue, L. (2011). Chelation of heavy metals by potassium butyl dithiophosphate. Journal of Environmental Sciences, 23(5), 778-783.
(47)	行政院環境保護署. (2015). 資源回收管理基金管理委員會, http://recycle.epa.gov.tw/Recycle/index2.aspx.
(48)	中華民國保麗龍回收再生協會. (2015). 食品用保麗龍常識篇, http://www.ctepsra.org.tw/index.php/organize/54-2008-11-10-04-53-12.
(49)	林昇佃. (2004). 燃料電池, 滄海書局.
(50)	黃柏雄. (2010). 廢發泡聚苯乙烯彈性防水塗料開發之研究. 碩士論文, 國立高雄第一科技大學.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信