淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2606201320233000
中文論文名稱 線型函數的迷思概念與補救教學策略研究
英文論文名稱 The misconceptions of the linear function and the study of the strategy of remedy teaching
校院名稱 淡江大學
系所名稱(中) 中等學校教師在職進修數學教學碩士學位班
系所名稱(英) Executive Master's Program In Mathematics for Teachers
學年度 101
學期 2
出版年 102
研究生中文姓名 林志成
研究生英文姓名 Chih-Cheng Lin
學號 700190035
學位類別 碩士
語文別 中文
口試日期 2013-06-24
論文頁數 132頁
口試委員 指導教授-李武炎
委員-楊國勝
委員-吳漢銘
中文關鍵字 線型函數  錯誤類型  迷思概念  補救教學 
英文關鍵字 linear function  the types of error  misconceptions  remedial instruction 
學科別分類
中文摘要 本研究之主要目的:在於探討在現行的課程發展之下,針對最後一屆基測學生﹙現今九年級﹚,在函數的補救教學前後,其線型函數錯誤類型和迷思概念的變化情形。並歸納分析前測時學生作答的錯誤類型,藉此瞭解學生的迷思概念,施以補救教學。同時了解十二年國教學生與九年一貫學生的學習結果是否有任何差異性,可將此結論提供給以後任教此單元教師在教授十二年國教學生時做為參考,或做為教學的改進與建議。也希望將得到的研究結果能作為教師在教學上的參考,和發展以學校為本位的數學課程和編寫課程綱要時,也能提供適當的建議。
本研究以台北市某國民中學九年級全部學生為研究對象,樣本數為70名。主要是以Anna Sfard(1991)的概念發展理論和皮亞傑、布魯納等人的認知發展理論為依據,自編測驗卷,實施評測,輔以面談方式驗證其解題的策略和過程,然後依據所得資料進行統計分析,以探討國中學生在線型函數概念的學習狀況。  
本研究之主要發現如下:
一、國中生對於線形函數概念的主要錯誤類型有:1. 對函數定義本身的誤解。2. 過於依賴線型函數。3. 文字敘述的表徵轉換到代數式的表徵發生錯誤。4. 表格表徵與函數概念間連結的困難。5. 函數圖形理解與繪製上的困難。6. 對數學名詞的不瞭解。
二、補救教學後的學習成效:1. 能由代數式完成表列進而畫出函數圖形。2. 能判斷線型函數的一次函數與常數函數的圖形。3. 能判斷出線型函數圖形間之平行關係。4. 能判斷出某點在直線上所對應的值與直線通過某點的函數值是相等關係。5. 能藉由兩個不同的函數值去求出線型函數。
以鑒於此面對現今十二國教的學生,所以教育部今年開始努力在推動「補救教學」,甚至於大動作的調訓國文、英文、數學三大領域的老師進行 8 小時的「補救教學」研習,期盼讓學生得以透過「補救教學」將學習效果能夠提升起來。
英文摘要 Abstract
The main purpose of this study is to investigate the changes and the improvements of the linear function misconceptions of the students who will take the last Basic Competence Test (the present ninth graders). The students’ answers and errors are examined prior to analysis in order to understand the students’ misconceptions and to implement remedial instruction. Meanwhile, the study also investigates the difference in the learning outcomes between the students under the nine-year-curriculum and those under the new twelve-year-curriculum. The results will hopefully offer the teachers facing the new curriculum plan better references for teaching improvements. We also hope that the research results can be used as the reference of the development of school-based mathematics curriculum and the preparation of syllabuses.
The subjects of this study are the ninth-grade students of a Taipei junior high school, a sample of seventy in total. Anna Sfard (1991) based her development theory on the theory of cognitive development of Piaget, Bruner et al. She developed self test paper, implemented evaluation to verify the problem-sloving strategies and processes supplemented by interviews to abstract the information of statistical analysis, thus to explore the concept of linear function of the junior high school students.
The major findings of this study are as follows:
First, the main error types of linear function of junior high school students are:
1. Misunderstanding the definition of the function.
2. Excessive dependence on the linear function.
3. Errors occur on the conversion of narrative characterization to the algebraic characterization.
4. Difficulties in linking the characterization of the tables and the concept of function.
5. Difficulties in function graph understanding and drawing.
6. The lack of understanding of the mathematical terms.

Second, outcomes of remedial teaching:
1. Students being able to complete the algebraic tables and then draw the graph of a function.
2. Able to analyze the graphics of the linear function and a constant function.
3. Able to judge the parallel relationship between the linear function graphs.
4. Able to determine the function corresponding to a point on a straight line and the straight line passing through a point.
5. Able to obtain a linear function from two different function values.

To prepare for the twelve-year-curriculum, the Ministry of Education, in the beginning of this year, has been working on the promotion of “remedial teaching,” and even recruit teachers of the three main areas: Chinese, English, and Mathematics for an eight hour “remedial teaching” workshop, looking forward to offering the students better remedial instruction in the future.
論文目次 目 錄
第壹章 緒論.............................1
  第一節 研究動機.........................1
  第二節 理論架構.........................3
  第三節 研究目的........................12
  第四節 名詞界定........................13
第貳章 文獻探討..........................15
  第一節 線型函數........................15
  第二節 迷思概念........................18
  第三節 補救教學........................21
  第四節 策略分析........................28
第叁章 研究方法..........................38
  第一節 研究設計........................38
  第二節 研究對象........................39
  第三節 前置研究........................39
  第四節 研究工具........................41
  第五節 研究程序........................52
  第六節 研究限制........................54
第肆章 分析與討論.........................55
  第一節 線型函數學習成就的變化.................55
  第二節 錯誤類型的情形.....................66
  第三節 迷思概念的情形.................... 98
第伍章 結論與展望........................ 108
  第一節 結論..........................108
  第二節 建議..........................112
參考文獻.............................115
中文部份.............................115
英文部份.............................119

附錄...............................125
附件一..............................125
附件二..............................128
附件三..............................131

圖次
圖1-2-1 訊息處理模式....................... 10
圖3-4-1線型函數的迷思概念與補救教學策略研究流程圖....... 53
圖4-1-1前測每人答對題數次數(成績)長條圖..............61
圖4-1-2 後測每人答對題數次數(成績)長條圖..............61
圖4-1-3前後測各題答對人數長條圖..................64
圖4-1-4前後測各題答對人數折線圖................. 64

表 次
表1-2-1 Piaget 認知發展階段特徵................... 6
表1-2-2 認知發展各學派代表學者的理論重點..............11
表2-4-1 建構式教學與傳統式教學設計之比較一覽表...........32
表2-4-2 傳統課室與合作學習課室的差異比較表.............35
表3-3-1試題分析報告表.......................39
表 4-1-1 難度的評鑑標準.......................56
表 4-1-2 鑑別度的評鑑標準表.....................57
表 4-1-3 前測試題分析表.......................57
表 4-1- 4 後測試題分析表...................... 58
表 4-1-5 前測和後測常態檢定.................... 59
表 4-1-6 前測和後測個人答對題數統計分析表............. 60
表4-1-7前後測個人答對題數成對樣本T檢定..............62
表4-1-8前測與後測各題答對人數次數分配表統計量...........63
表4-1-9 前測和後測各題答對人數成對樣本T檢定...........65
表4-2-1第一題前後測交叉分析表...................66
表4-2-2.1第一題前後測卡方檢定................... 66
表4-2-2.2 第一題f前後測Wilcoxon 符號等級檢定............ 67
表4-2-3.第二題前後測交叉分析表.................. 69
表4-2-4.1第二題前後測卡方檢定................... 69
表4-2-4.2第二題前後測Wilcoxon 符號等級檢定........... 70
表4-2-5第三題前後測交叉分析表...................71
表4-2-6.1第三題前後測卡方檢定................... 71
表4-2-6.2第三題前後測Wilcoxon 符號等級檢定............ 72
表4-2-7第四題前後測交叉分析表...................73
表4-2-8.1第四題前後測卡方檢定...................74表4-2-8.2第四題前後測Wilcoxon 符號等級檢定............74
表4-2-9第五題前後測交叉分析表...................75
表4-2-10.1第五題前後測卡方檢定...................76
表4-2-10.2第五題前後測Wilcoxon 符號等級檢定........... 77
表4-2-11第六題前後測交叉分析表...................78
表4-2-12.1第六題前後測卡方檢定...................78表4-2-12.2第六題前後測Wilcoxon 符號等級檢定........... 79
表4-2-13第七題前後測交叉分析表.................. 80
表4-2-14.1第七題前後測卡方檢定...................80
表4-2-14.2第七題前後測Wilcoxon 符號等級檢定........... 81
表4-2-15第八題前後測交叉分析表.................. 82
表4-2-16.1第八題前後測卡方檢定...................83
表4-2-16.2第八題前後測Wilcoxon 符號等級檢定........... 84
表4-2-17第九題前後測交叉分析表.................. 85
表4-2-18.1第九題前後測卡方檢定...................85表4-2-18.2第九題前後測Wilcoxon 符號等級檢定........... 86
表4-2-19第十題前後測交叉分析表.................. 87
表4-2-20.1第十題前後測卡方檢定...................88表4-2-20.2第十題前後測Wilcoxon 符號等級檢定........... 89
表4-2-21第十一題前後測交叉分析表................ 90
表4-2-22.1第十一題前後測卡方檢定................. 91
表4-2-22.1第十一題前後測Wilcoxon 符號等級檢定.......... 92
表4-2-23第十二題前後測交叉分析表................. 93
表4-2-24.1第十二題前後測卡方檢定..................93
表4-2-24.2第十二題前後測Wilcoxon 符號等級檢定.......... 94
表4-2-25第十三題前後測交叉分析表................. 95
表4-2-26.1第十三題前後測卡方檢定................. 95表4-2-26.2第十三題前後測Wilcoxon 符號等級檢定.......... 96
表 5-1-1前後測各題答對人數表....................108
參考文獻 中文部份:
S kemP , R . R . ( 1987 )。數學學習心理學(陳澤民譯)。 臺北,九章出版社。(出版於 1995 ) 。
尤正成(民84)。關於函數教學的數學知識─以國中數學學習教師為例。彰化市:國立彰化師範大學科學教育研究所碩士論文。
王文科(1995)。教育研究法(第四版)。台北:五南。
余民寧(1997)。有意義的學習─概念構圖之研究。台北市:商鼎。
吳明清(1991)。教育研究— 基本概念與方法分析。台北:五南。
吳清山、林天佑(2005)。外籍配偶子女。教育研究月刊,第135期,頁156。
吳淑琳(民90),國中生線型函數概念發展之個案研究。台北市:國立台灣師範大學數學研究所碩士論文。
呂溪木(1985)。從國際科展看我國今後科學教育發展的方向。科學教育月刊,64,pp.13-19。
李連芬(2002)。教學模組之設計與實踐—以國小二年級乘法補救教學為例。未出版之碩士論文。國立屏東師範學院數理教育研究所,屏東。
李翠玲(1993)。如何教國中低成就班級-英語教學錦囊。人文及社會學科教學通訊,第4期,39-52頁。
李璧如( 2 006 )。改善國中生電流消耗模式迷思概念之教學策略研究。國立高雄師範大學數學教育研究所碩士論文。
杜正治(1993)。補救教學的實施。學習輔導:學習心理學的應用,頁397-428。臺北:心理出版社。
周立勳(1998)。分組合作學習中兒童的情意表現。嘉義師院學報,12, pp.39-72。
林文俊(2002)。線型函數概念在國中數學課程中發展的脈絡(未出版)。國立 臺灣師範大學,臺北市。
林寶山(1991)。教學原理。台北:五南圖書出版公司。
林進財(1999)。教學研究與發展。台北市:五南。
邱上真(1992)。學習障礙兒童的教育評量—認知取向。特殊教育季刊,第43期,頁1-6。
邱芳津(1990)。國二資優生線型函數概念之研究(未出版)。國立彰化師範大 學,彰化市。
邱美虹( 2000 )。概念改變研究的省思與啟示。科學教育月刊, 8 ( l ) , l - 34 。
邱美虹和林妙霙(1996)。合作學習對國三學生學習「地層記錄地質事件」的影響。教育研究資訊,4(6),pp.108-128。
洪清一(1993)。學習障礙者之學業補救教學原則。特教園丁,第8卷第3期,32-36頁。
徐貞美(1993)。如何提高國中低成就學生學習英語的動機與效果。人文及社會學科教學通訊,第4期,6-14頁。
秦麗花(1995)。國小數學學障兒童數學解題錯誤類型之分析。特殊教育季刊。55,pp.33-38。
馬淑茵(2001)。初小數學學習困難:一個教學輔導設計個案。香港中文大學數學教育第四期。
高源令(2003)。訊息處理模式與教學。載於黃國彥(主編),教育心理學(頁249-250)。台北市:心理。
國立編譯館主編(民89a),國民中學數學(第三冊)。台北市:國立編譯館。
康木村、吳吉昌(1998)。國中數學科個別化補救教學實徵性研究。國教研究雙月刊。第12期,頁15∼20。
張春興(1997)。教育心理學。台北市:東華。
張春興、林清山(1992)。教育心理學。台北市:東華。
張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,pp.175-200。
張新仁(1995)。教學原理與策略。刊載於王家通主編之教育導論。臺北:五南出版社。
張新仁(2000)。補救教學面面觀。九年一貫課程改革下補救教學方案研討會論文彙編。國立高雄師範大學。
張新仁(2001)。實施補救教學之課程與教學設計。國立高雄師範大學教育學系教育學刊,第17期,頁85-106。
張鳳燕(1991)。從概念學習談國小數學教育。師友月刊,284,35-42。
張靜嚳(1994)。以問題為中心的教學策略對數學成就之影響。國科會專題研究計畫成果報告,NSC83-0111-S-018-007
張靜嚳(1995)。建構教學:採用建構主義,如何教學?中部地區科學教育簡訊,7,1。
教育部(2000)。國民中小學九年一貫課程綱要數學學習領域。台北:教育部。
許天威(1986)。學習障礙者之教育。臺北:五南出版社。
郭生玉(1995)。心理與教育測驗。臺北市:精華。
郭為藩(1990)。特殊教育名詞彙編(第四版)。台北市:心理。
陳李綢(1992)。認知發展與輔導。台北市:心理。
陳長春(1992)。加強補救教學的意義。中縣文教,第13期,頁17-18。
陳盈言(2001)。國二學生變數概念的成熟度對函數概念發展的影響之研究(未 出版)。國立臺灣師範大學,臺北市。
陳創義(2003)。國科會:青少年的數學概念學習研究子計劃八:青少年的函數概念發展研究(2/2) Understanding and Learning of Function : Junior High School Student計劃編號: NSC 91-2521-S-003-008-執行年限:91年8月1日至92年10月31日。
喻平、馬再鳴(2002 )。論數學概論學習。數學傳播,26(2),89-95。
曾志華(1997)。以建構論為基礎的科學教育理念。教育資料與研究。14,pp.74-80。
黃政傑和林佩璇(1995)。合作學習。台北:五南。
黃瑞珍(1993)。資源教室的經營與管理。台北:心理。
黃漢龍(2001)。資訊教育環境下可行的補救教學措施探討。資訊與教育雜誌,第85期,頁94-103。
楊坤堂(1997)。注意力不足過動異常兒童的診斷與處境。台北市:市北師特殊教育中心。
楊弢亮(1992 ) 。中學數學教學法通論。臺北:九章出版社。
劉天民( 1993 )。當代教育心理學。台北市:五南。
劉天民(1993)。高雄地區國一學生數學整數與分數四則運算錯誤類型之分析研究。國立高雄師範大學數學教育研究所碩士論文。
蔡文錦( 1991 )。發展紙筆測驗以探究高三學生對化學平衡的迷思概念。國立彰化師範大學科學教育研究所碩士論文。
蔡清田(2000)。教育行動研究。台北:五南。
鄭維誠 (2002)。線型函數的學習對國二學生變數概念發展的影響。國立臺灣師範大學,臺北市(未出版)。
鄧雅文( 2004 )。我國中學生平衡迷思概念和心智模式之研究。國立臺灣師範大學數學研究所碩士論文。
謝豐瑞、陳材河(民86):函數的一生。科學教育月刊,199,pp.34-43。
鍾聖校( 1995 )。國小自然科課程教學研究。臺北“五南出版社。
鍾鳳嬌()。從親子互動語言分析探討幼兒內在化的現象。論文發表於台南師範學院「海峽兩岸兒童發展與適應問題」學術研討會,台南市。
顏啟麟、羅昭強(1993)。國中生函數概念認知發展與教學之研究。Proceedings of the National Science Council, Republic of China, Part D: Mathematics, Science and Technology Education,3(2),43-54。
英文部份:
Argyris, C.& Schon, D. (1978). Organizational learning: A theory of action perspective. San Francisco: Jossey-Bass Publisher.
Ashlock, R.B.(1990).Error patterns in computation: A semi-programmed approach(5thed).Columbus, Ohio:merril.
Baker, W. P., & Lawson, A. E. (1995). Effect of analogic instruction and reasoning level on achievement in general genetics. (ERIC Document Reproduction Service No. 390 713).
Bardini, C., & Stacey, K. (2006). Students’ conceptions of m and c: How to tune a linear function. In Novotna, J., Moraova, H., Kratka, M. & Stehlikova, N. (Eds.), Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 113-120). Prague: PME.
Booth, L. R. (1984). Child-method in secondary mathematics. Educational studies iii Mathematics, 12, 29-41.
Booth, R.L.(1988).Children’s difficulties in beginning algebra. In A.E. Coxford and A.P. Shulte. The ideas of algebra, K-12. 1988 Yearbook. The National Council of Teachers of Mathematic Virginia, U.S.A. pp20-32.
Calhoun, E. F.(1993). Action research: Three approaches. Educational Leadership
Class, G. V., & Smith, M. L.(1979).Meta-analysis of research on class size and achievement. Educational Evaluation and Policy Analysis,1,2-16.
Dreyfus, T., & Eisenberg, T. (1982). Intuitive functional concepts: A baseline study onintuitions. Journal for Research in Mathematics Education, 13(5), 360-380.
Ebel, R. L. & Frisbie, D.A(1991). Essentials of educational measurement(5th ed.) Englewood Cliffs,NJ: Prentice-Hall.
Even, R. (1990). Subject matter knowledge for teaching and the case of function.Educational Studies in Mathematics, 21,521-544.
Gagne, R. M. (1970). The condition of learning (2nd ed). New York: Holt, Rinehart, and Winstone.
Good, T. L. & Brophy, J. (1992), contemporary Educational psychology, 李素卿譯
Hitt, F. (1993). Internal and external representations related to the function concept,For the Psychology of Mathematics Education, October, 17-20.
Hitt, F. (1993). Internal and external representations related to the function concept, For the Psychology of Mathematics Education, October, 17-20.
Janvier, C. (1987a). Representation and Understanding: The Notion of Function as anExample. In C. Janvier, (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp.67-71). New Jersey, Lawrence Erlbaum Associates, Inc.
Janvier, C. (1987b). Conceptions and representations: The Circle as an example. In C. Janvier, (Ed.), Problems of Representation in the Teaching and Learning of Mathematics ( pp.147 -158). New Jersey, Lawrence Erlbaum Associates, Inc.
Johnson D.W. ,Johnson R.T.(1984),Circle of Learning: cooperation in the classroom. Alexandria,VA:Association for Supervision and Curriculum Development. D
Johnson, D.W., and Johnson, R.T.(1994). Learning together and alone :Cooperation, competitive, and individualistic learning . Boston:Allyn & Bacon.
Loftus, E.F. & Suppes, p.(1972).Structural Variables that Determine problem-solving Difficulty in computer Assisted Instruction. Journal of Educational Psychology,63, 531-542.
Lovell, K. (1971). Some aspects of the growth of the concept of function. In M. F.Rosskopf, L. P. Steffe, & S. Taback (Eds.), Piagetian cognitive-development researchand mathematical education (pp. 12-33). Washington, DC: National Council of Teachers of Mathematics
Lovell, K. (1971). Some aspects of the growth of the concept of function. In M. F.
Markovits, Z., Eylon, B., & Bruckheimer, M. (1986). Functions Today and Yesterday.For the Learning of Mathematics, 6(2), 18-28
Markovits, Z., Eylon, B., & Bruckheimer, M. (1988). Difficulties Students Have with the Function Concept. In A. F. Coxford, & A. P. Shulte (Eds.), The ideas of algebra, K-12 (pp.43-60). University of Michigan.
Maurer, S.B.(1987). New Knowledge about Errors and new Biews about Learners: What They Mean to Educations and More Educators Would Like to Know. In A.H. Schoenfeld(Ed.), Cognitive Science and mathematics Education, 165-187.
Mayer, R.E. (1985). Educational Psychology: Cognition Approach. N.Y.: Freeman.
National Council of Teachers of Mathematics.
NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA:
Nichols, P. D. (1994). A framework for developing cognitively diagnostic assessments. Review of Educational Research, 64(4), 575-603.
Odom, A. L., & Barrow, L. H. (1995). Development and application of a two-tier diagnostic test measuring college biology students’ understanding of diffusion and osmosis after a course of instruction. JRST, 32(1), 45-61.
Ornstein, A. C. and Hunkins, F. P.(1993). Curriculum: Foundations, principles and issues. Boston: Allyn & Bacon.
Pella, M. 0. (1975). Concept of Concept. University of Wisconsin-Mwdison.
Phillip, E.D. & April, C.(1992). The effects of cooperative group work versus independent practice on the learning of some problem-solving strategies. School Science and Mathematics,92(2),80-83.
Pierce, R. (2005). Linear functions and a triple influence of teaching on the development of students’ algebraic expectation. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 81-88. Melbourne: PME.
Pierce, R., Stacey, K. & Bardini, C. (2010). Linear functions: teaching strategies and students' conceptions associated with y = mx + c. Pedagogies: An International Journal, 5(3), 202-215.
Pines. A. L. (1980). A Model for Program Development and Evaluation: The formative role of suinmative evaluation and research in science education. Paper presented at the Annual Conference of the International Congress for Individualized Industruction. Canada:Windsor.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2),211-227.
Rosskopf, L. P. Steffe, & S. Taback (Eds.), Piagetian cognitive-development research and mathematical education (pp. 12-33). Washington, DC: National Council of
Schon, D. A. (1983). The reflective practitioner: how professionals think in action. New York: Basic Books.
Sfard, A. (1997). A Mathematician’s view of research in Mathematics Education: An Interview with Shimshon A. Amitsur. Mathematics Education as a Research Domain: A Search for Identity,445-458.
Sharan,S. & Shachar,H.(1988). Language and learning in the cooperative classroom. New York: Spring–Verlag.
Shoenfeld, A.H.(1985). Mathematical Problem Solving. London: Academic Press.
Teachers of Mathematics.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10 (2), 159-169.
Treagust, D. F. (1997). Diagnostic assessment of students’ science knowledge. Paper presented at the 1997 International workshop on student’s concept development, understanding diagnosis and teaching. Feb. 17-20, Taipei.
Vincent, L. F. (2004). Doing the Math: It’s More than Numbers. Principal Doing the Math Postscript, 84(2), 64-65.
Willis, S.(1992). Cooperation Learning shows staying power. ASCD update,34(2),1-2.
Yen, C. L. & Law, C. K. (1993). Cognitive development of the concepts of linear function and quadratic function for junior school students. Mathematics, Science, and Technology Education, Vol.3, No.2, 43-54.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信