淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2606200911033100
中文論文名稱 凝膠衍生TiO2粉體與薄膜之光催化及光電性質探討
英文論文名稱 Photocatalytic activities and photovoltaic properties of gel-derived TiO2 powder and thin films
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 胡發鈞
研究生英文姓名 Fa-Chun Hu
學號 696400034
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 99頁
口試委員 指導教授-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 TiO2  溶膠-凝膠法  旋轉塗佈法  光觸媒  光電轉化效率 
英文關鍵字 TiO2 photocatalyst  Sol-gel process  spin-coated  photovoltaic efficiency 
學科別分類
中文摘要 本研究以溶膠-凝膠法製備出TiO2粉體與薄膜,其中主要完成工作有三:1. 製備高熱穩定且在可見光照射下具高光催化效果的磷-鋅共摻合型TiO2奈米粉體;2. 製備與分析高熱穩定性與高光催化效果的TiO2薄膜;3. 製備與分析P-N接面TiO2薄膜在光電轉換元件應用上的可行性。
第一部份實驗中,主要以溶膠-凝膠法(sol-gel method)來製備P/Zn-TiO2奈米粉體。過程中有系統的探討摻合物(dopants)的比例對其熱穩定性、能隙大小及光催化效果的影響。[H3PO4]/[Zn(NO3)2]≧2時,不僅能夠維持銳鈦礦相態的TiO2至800oC外還能夠在光催化活性的表現上有著優異的表現。P/Zn-TiO2粉體在紫外光照射30分鐘後能夠達到96mol%以上的亞甲基藍降解,而在可見光照射60分鐘後也可以達到80mol%以上的亞甲基藍降解,以上之結果皆比市售TiO2粉體P25有著更好的表現。
第二部份實驗中則利用溶膠-凝膠法及旋轉塗佈技術製備具有與基材有高鍵結力與高熱穩定性的二氧化鈦薄膜並探討其粗糙度、厚度、結晶相態、紫外-可見光吸收度及光催化效果。結果發現以800oC煆燒後的TiO2薄膜因為其擁有最大的銳鈦礦相態晶粒尺寸與孔洞且能吸收較多紫外光,因此有最佳的光催化活性表現。所製備出之TiO2薄膜經行重複的光催化活性實驗以及藉由超音波機震盪後再次觀察其光催化活性,其結果顯示煆燒後的TiO2薄膜皆可保有相似的光催化能力。因此說明此製程所製備出之TiO2薄膜與基材有著緊密的結合性,可以進行重複的光催化反應,大大增加此TiO2薄膜的應用範圍。
最後,在第三部份光電轉化元件製備上,所添加的P5+成功將TiO2薄膜轉變為P型半導體材料並成功製備出凝膠衍生的P型TiO2薄膜,進而披附於N型TiO2薄膜上以製備出含P-N接面的TiO2薄膜。利用SEM觀察TiO2薄膜截面中,N型、P型及P-N接面之厚度分別為50、50及100nm。此製備出之N型、P型及P-N接面在可見光範圍下皆可以達到80%以上之穿透率值。最後利用此含P-N接面的TiO2薄膜與對電極加以組裝後形成一光電轉化元件後,不僅發現此P-N接面擁有開關效應外,含P-N接面的TiO2薄膜比N型TiO2薄膜更能提升其光電轉化效率,提升約363%,而將此含P-N接面的TiO2薄膜應用於目前染料敏化電池元件中時更可提高其光電轉化效率21.7%。
英文摘要 Abstract:
TiO2 photocatalyst powder and films were synthesized using sol-gel method. Three major accomplishments were achieved:
1. 5 mol% P/Zn-TiO2 nanoparticles were synthesized using a sol–gel method. The results indicated that by doping both zinc and phosphorus elements into Ti–O framework, the resultant TiO2 can maintain anatase monophase at temperatures as high as 800 ◦C. The P/Zn–TiO2 nanoparticles prepared using [H3PO4]/[Zn(NO3)2]≥2 at 600–800 ◦C can decompose ≥96 mol% of the MB after 30 min of UV irradiation and can decompose ≥80 mol% of the MB after 60 min of white light irradiation, which are much better than those of the P25 particles.
2. The gel-derived TiO2 thin films were prepared and strongly adhered on fused-silica substrates using a spin-coating technique. Effects of calcination temperature on crystal structure, grain size, surface texture, and photocatalytic activity of the TiO2 films were investigated. The photocatalytic activity of the TiO2 thin film is characterized using a characteristic time constant (τ) for the photodecomposition of the methylene blue (MB) in water. The TiO2 films prepared at 800 oC have the best photocatalytic ability. The TiO2 film can be reused after being ultrasonically cleaned and washed with large amount of water, without detectable reduction in its photocatalytic ability.
This implies that the prepared TiO2 films were strongly attached on the substrate surface and can be used repeatly.
3. The gel-derived transparent P-type TiO2 thin films was successfully formed by adding the P5+ into the TiO2 thin film. By coating P-type TiO2 films on the N-type TiO2 thin film the TiO2 thin films with P-N junction were prepared. The N-type TiO2, P-type TiO2 and the TiO2 with P-N junction have their film thicknesses of 50, 50 and 100nm respectively. The transmittance on the visible light range is greater than 80% of these three type TiO2 thin films. Finally, the TiO2 with P-N junction was incorporated with the counter electrode to form a photovoltaic device. The TiO2 with P-N junction not only revealed the rectifying effect, but also possessed photovoltaic efficiency than N-type TiO2 thin films, which improved its efficiency about 363%. The use of the TiO2 thin film with P-N junction in DSSC device could improve the photovoltaic efficiency about 21.7%.
論文目次 目錄
中文摘要......................................................................................................................I
英文摘要...................................................................................................................III
第一章 緒論
1-1 光觸媒材料之興起.........................................................................................1
1-2 光觸媒材料之固定化.....................................................................................2
1-3 二氧化鈦於光電轉化元件的應用.................................................................3
1-4 研究目的………………………………………………………………….…4
第二章 文獻回顧
2-1二氧化鈦基本性質與晶體結構......................................................................6
2-2 二氧化鈦粉體與薄膜的製備
2-2-1 二氧化鈦粉體的製備.........................................................................8
2-2-2 二氧化鈦薄膜的製備.......................................................................14
2-3光觸媒催化原理............................................................................................22
2-4二氧化鈦粉體與薄膜的光催化效率提升....................................................24
2-5 光伏特效應...................................................................................................29
2-6 二氧化鈦P-N接面於光觸媒材料與光電轉化元件之應用.......................31
第三章 實驗步驟
3-1 磷-鋅共摻合型二氧化鈦奈米粉體之製備.................................................35
3-2 二氧化鈦薄膜之製備................................................ ..................................37
3-3 二氧化鈦P-N接面薄膜之製備...................................................................39
3-4 特性分析
3-4-1 X-ray 繞射分析 (X-ray diffraction analysis)..................................42
3-4-2 FT-IR 紅外光光譜分析(Infrared spectroscopy)..............................42
3-4-3 紫外-可見光光譜儀(Ultraviolet-visible spectrometer)…………..43
3-4-4 掃瞄式電子顯微鏡(Scanning Electron Microscope)......................44
3-4-5 原子力顯微鏡 (atomic force microscopy)......................................44
3-4-6霍爾量測(Hall measurement)............................................................44
3-4-7 光電轉化效率值計算.......................................................................45
3-5 光催化活性實驗
3-5-1 磷鋅共摻合型二氧化鈦粉體的光催化活性實驗...........................47
3-5-2二氧化鈦薄膜的光催化活性實驗.....................................................48
第四章 結果與討論
4-1 P/Zn-TiO2奈米粉體的相穩定與紫外-可見光照射下之光觸媒活性
4-1-1鋅元素於二氧化鈦的添加................................................ ................49
4-1-2 鋅與磷元素於二氧化鈦的添加.......................................................54
4-2 凝膠衍生TiO2薄膜之特性與光催化活性分析
4-2-1 TiO2薄膜之特性分析........................................................................61
4-2-2 TiO2薄膜之光催化活性探討……………………………………....73
4-3 凝膠衍生含有P-N接面之TiO2薄膜特性與光電轉化效率分析
4-3-1 P型TiO2薄膜與P-N接面結構性質分析…………………………77
4-3-2 含P-N接面的TiO2薄膜之電性與光電轉換效率量測…………...86
第五章 結論............................................................................................................92
參考文獻...................................................................................................................94
圖目錄
圖1-1為二氧化鈦光觸媒的應用領域。................................................ .......................2
圖2-1 銳鈦礦TiO2半導體接受一光能量使電子脫離示意圖。...............................23
圖3-1磷-鋅共摻合型二氧化鈦奈米粉體之製備流程圖。.......................................36
圖3-2 二氧化鈦薄膜製備流程圖。...........................................................................38
圖3-3 二氧化鈦P-N接面薄膜製備流程圖。.............................................................41
圖4-1-1 以不同煆燒溫度處理後P25與Zn- TiO2粉體之XRD與IR光譜圖。……51
圖4-1-2 以不同煆燒溫度處理後P25與Zn-TiO2粉體之紫外-可見光擴散反射光譜。…..........................................................................................................................52
圖4-1-3 以不同煆燒溫度處理後P25與Zn-TiO2粉體分別以365nm紫外光照射30分鐘及白光光源照射60分鐘下之亞甲基藍移除率圖。......................................53
圖4-1-4 PZ31Tc樣品的XRD圖譜。...........................................................................55
圖4-1-5 PZabTc樣品的晶粒尺寸。............................................................................55
圖4-1-6 以[H3PO4]/[Zn(NO3)2] =3所製備的P/Zn-TiO2樣品以不同煆燒溫度處理後之IR光譜圖。...........................................................................................................57
圖4-1-7 PZabTc粉體以365nm紫外光燈照射30分鐘後之亞甲基藍光降解圖。…60
圖4-1-8 PZabTc粉體以白光燈照射60分鐘後之亞甲基藍光降解圖。....................60
圖4-2-1 TiO2薄膜在不同煆燒溫度處理下之XRD圖譜。........................................62
圖4-2-2 TiO2薄膜在不同煆燒溫度處理下之銳鈦礦與金紅石相態之晶粒尺寸。.62
圖4-2-3 以AFM觀察TiO2薄膜在不同煆燒溫度處理下之表面型態圖。..............65
圖4-2-4 以SEM觀察不同煆燒溫度處理後之TiO2薄膜表面及截面形態圖。......69
圖4-2-5 TiO2薄膜在不同煆燒溫度處理下與fused-SiO2基材之紫外-可見光穿透光譜圖。............................................................................................................................71
圖4-2-6 TiO2薄膜在不同煆燒溫度處理後之光降解亞甲基藍濃度改變曲線與特性時間常數值。................................................................................................................76
圖4-3-1 P型TiO2薄膜(PTF)的霍爾效應圖。.............................................................78
圖4-3-2 TiO2 P-N接面與ITO基材之XRD圖譜。.....................................................79
圖4-3-3 ITO導電玻璃基材與含P-N接面的TiO2薄膜之SEM及AFM表面型態圖與含P-N接面的TiO2薄膜表面之元素組成分析圖譜。........................................81
圖4-3-4 N型、P型及P-N接面薄膜與ITO基材之SEM截面圖。...........................83
圖4-3-5 N型、P型及P-N接面薄膜與ITO基材之紫外-可見光穿透光譜圖。.........85
圖4-3-6 含P-N接面的TiO2薄膜電池組裝圖。........................................................87
圖4-3-7 含P-N接面的TiO2薄膜之電流-電壓曲線圖。...........................................87
圖4-3-8 不同組態的P-N接面圖。.............................................................................90
圖4-3-9 未加裝與加裝TiO2 P-N接面的染料敏化電池的組態圖。........................90


表目錄
表2-1 二氧化鈦結晶相態與物理性質........................................................................7
表2-2 奈米粉體的製備方式與特點............................................................................8
表2-3 物理氣相沈積、化學氣相沈積和溶膠-凝膠法的比較............................... 18
表4-1-1 PZacTc與P25的結晶相態圖........................................................................51
表4-1-2 P/Zn-TiO2樣品能隙值...................................................................................57
表4-2-1 TiO2薄膜在不同煆燒溫度處理下之表面平均粒子高度與粗糙度...........65
表4-2-2 TiO2薄膜在不同煆燒溫度處理下與fused-SiO2基材之紫外-可見光穿透率值..................................................................................................................................72
表4-3-1 N型、P型及P-N接面薄膜與ITO基材之紫外-可見光下穿透值...............85
表4-3-2 不同組態下的P-N接面之光電轉化效率值...............................................91
參考文獻 參考文獻
1. M. R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 69-96 (1995).
2. Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films.” J. Phys. Chem. A, 101, 8057-8062 (1997).
3. A. Fujishima, T.N. Rao, and D.A. Tryk, “Titanium dioxide photocatalysis.” J. Photochem. Photobiol. C, 1, 1-21 (2000).
4. M. Gopal, W.J. Moberly Chan, and L.C. De Jonghe, “Room temperature synthesis of crystalline metal oxides.” J. Mater. Sci. 32, 6001-6008 (1997).
5. M. Anpo, “Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under uv–visible light irradiation: approaches in realizing high efficiency in the use of visible light.” Bull. Chem. Soc. Jpn., 77, 1427-1442 (2004).
6. J.C. Yu, J. Yu, L. Zhang, and W. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders.” J. Photochem. Photobiol. A, 148, 263-271 (2002).
7. Y. Miyake, and H. Tada, “Photocatalytic degradation of methylene blue with metal-doped mesoporous titania under irradiation of white Light.” J. Chem. Eng. Jpn. 37, 630-635 (2004).
8. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results.” Chem. Rev. 95, 735-758 (1995).
9. 曹茂盛,關長斌,徐甲強編著,奈米材料導論,學富文化事業公司,(2002)。
10. D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis,Properties, and Applications.” Adv. Mater. 18, 2807-2824 (2006).
11. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube.” Langmuir 14, 3160-3163 (1998).
12. M. Douglas, Thin Solid Films, 25, 204 (1991).
13. D. G. Huanga, S. J. Liao, J. M. Liu, Z. Dang, L. Petrik, “Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method” J. Photochem. Photobiol. A, 184, 282–288, (2006).
14. J. W. Shi, J. T. Zheng, Y. Hu, Y. C. Zhao, “Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2”, Mate. Chem. Phys., 106, 247–249, (2007).
15. M. S. Lee, S. S. Hong, M. Mohseni, “Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent.” J. Mol. Catal. A: Chem., 242, 135–140, (2005)
16. Y. X. Zhang, G. H. Li, Y. C. Wu, T. Xie, “Sol–gel synthesis of titania hollow spheres.” Mater Res Bull, 40, 1993–1999, (2005).
17. H. F. Yu, “Photocatalytic abilities of gel-derived P-doped TiO2,” J. Phys. Chem. Solids. 68, 600-607 (2007).
18. W. Xu, S. Dong, D. Wang, and G. Ren, “Investigation of microstructure evolution in Pt-doped TiO2 thin films deposited by rf magnetron sputtering.” Physica B, 403, 2698-2701 (2008).
19. F. Jin, P. K. Chu, K. Wang, J. Zhao, A. Huang, and H. Tong, “Thermal stability of titania films prepared on titanium by micro-arc oxidation.” Mater. Sci. Eng. A, 476, 78-82 (2008).
20. 陳湘林,低溫製作二氧化鈦光催化薄膜,碩士論文,國立中央大學,(1997)。
21. T. Yoko, L. Hu, H. Kozuka, and S. Sakka, “Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method.” Thin Solid Films, 283, 188-195 (1996).
22. M. Kusabe, H. Kozuka, S. Abe, and H. Suzuki, “Sol–gel preparation and properties of hydroxypropylcellulose–titania hybrid thin films,” J. Sol-Gel Sci. Technol., 44, 111-118 (2007).
23. 高維鑫,家用日光燈照射二氧化鈦塗膜的殺菌作用,碩士論文,大同大學, (2004)。
24. 李俊賢,負載銀二氧化鈦光觸媒分散及其光催化反應之研究,碩士論文,國立清華大學,(2003)。
25. J. Yu, X. Zhao, and Q. Zhao, “Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method.” Thin Solid Films, 379, 7-14 (2000).
26. W. Zhang, Y. Chen , S. Yu , S. Chen, and Y. Yin, “Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films” Thin Solid Films, 516, 4690-4694 (2008).
27. T. Ohno, T. Mitsui, and M. Matsumura, “Photocatalytic activity of S-doped TiO2 photocatalyst under visible light.” Chem. Lett., 32, 364-365 (2003).
28. Y. Nosaka, M. Matsushita, J. Nishino, and A. Y. Nosaka, “Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds.” Sci. Tech. of Adv. Mat. 6, 143-148 (2005).
29. The-Vinh Nguyen, S. Kim, and O-Bong Yang, “Water decomposition on TiO2–SiO2 and RuS2/TiO2–SiO2 photocatalysts: the effect of electronic characteristics” Catal. Commun., 5, 59-62 (2004).
30. J. C. Yu, L. Zhang, Z. Zheng, and J. Zhao, “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.” Chem. Mater. 15, 2280-2286 (2003).
31. 林亞南,製程參數對TiO2-SiO2複合薄膜及複合粉末性質之研究,碩士論文, 大同大學,(2004)。
32. H. F. Yu, “Phase development and photocatalytic ability of gel-derived P-doped TiO2” , J. Mater. Res., 22, 2565-2572 (2007).
33. S. Liao, H. Donggen, D. Yu, Y. Su , and G.. Yuan, “Preparation and characterization of ZnO/TiO2, SO42−/ZnO/TiO2 photocatalyst and their photocatalysis.” J. Photochem. Photobiol. A, 168, 7-13 (2004).
34. L. Kőrösi, and I. Dékány, “Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide.” Colloids Surf. A, 280, 146-154 (2006).
35. Y. Djaoued, S. Badilescu, P. V. Ashrit, D. Bersani, P. P. Lottici, and J. Robichaud, “Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films,” J. Sol-Gel Sci. and Tech. 24, 255-264 (2002).
36. Ben G. Streetman, Sanjay Banerjee著,吳孟奇等譯,半導體元件,臺灣培生教育,(2007)。
37. F. Ye, A. Ohmori, C, Li, “New approach to enhance the photocatalytic activity of plasma sprayed TiO2 coatings using p-n junctions.” Surf. Coat. Tech., 184, 233–238, (2004).
38. C. Shifu, Z. Sujuan, L. Wei, Z. Wei, “Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2.” J. Hazard. Mater., 155, 320–326, (2008).
39. C. Shifu, Z. Sujuan, L. Wei, Z. Wei, “Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2.” Appl. Surf. Sci., 255, 2478–2484, (2008).
40. J. Bandara, U.W. Pradeep, R.G.S.J. Bandara, “The role of n–p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells.” J. Photochem. Photobiol. A Chem., 170, 273–278, (2005).
41. Y. M. Lee, C. H. Hsu, H. W. Chen, “Structural, optical, and electrical properties of p-type NiO films and composite TiO2/NiO electrodes for solid-state dye-sensitized solar cells” Appl. Surf. Sci., 255, 4658–4663, (2009).
42. Leo C. K. Liau, C. C. Lin, “Fabrication and characterization of Fe3+-doped titania semiconductor electrodes with p–n homojunction devices.” Appl. Surf. Sci., 253 , 8798–8801, (2007).
43. Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, “Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes.” Thin Solid Films, 349, 120-125, (1999).
44. R.A. Spurr, H. Myers, Anal. Chem., 29, 760, (1957).
45. 汪建民主編,材料分析,中國材料科學學會,(1998)。
46. W.L Bragg, “The diffraction of short electromagnetic waves by a crystal”, Proceeding of the Cambridge Philosophical Society, 17, 43-57, (1914).
47. G. Socrates, “Infrared and Raman Characteristic Group Frequencies—Tables and Charts, third ed.”, Wiley, New York, 2001.
48. H. Takahashi, T. Oi, M. Hosoe, J. Mater. Chem., 12, 2513, (2002).
49. D.G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, H. Itoh, “Preparation of anatase and rutile thin films by controlling oxygen partial pressure.” Appl. Surf. Sci., 193, 287-292, (2002).
50. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, M. Toyoda, “Preparation of stable anatase-type TiO2 and its photocatalytic performance”, Int. J. of Inorg. Mater., 3, 809–811, (2001).
51. M. Hirano, C. Nakahara, K. Ota, O. Tanaike, M. Inagaki, “Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions”, J. Solid State Chem., 170, 39–47, (2003).
52. A. Gorzkowska–Sobas, E. Kusior, M. Radecka, K. Zakrzewska, “Visible photocurrent response of TiO2 anode”, Surf. Sci., 600, 3964–3970, (2006).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信