淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2606200812172600
中文論文名稱 允許缺貨並考慮延遲付款的非瞬間退化物品之經濟訂購量存貨模式
英文論文名稱 An EOQ inventory model for non-instantaneous deteriorating items with shortages under permissible delay in payments.
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 96
學期 2
出版年 97
研究生中文姓名 陳浩榮
研究生英文姓名 Hao-Rong Chen
電子信箱 s13923035@gmail.com
學號 695620442
學位類別 碩士
語文別 中文
口試日期 2008-06-11
論文頁數 104頁
口試委員 指導教授-歐陽良裕
委員-楊志德
委員-倪衍森
中文關鍵字 存貨  非瞬間退化  延遲付款  完全欠撥  隨機欠撥率 
英文關鍵字 Inventory  Non-instantaneous Deterioration  Delay in Payment  Complete Backlogging  Random Backlogging Rate 
學科別分類 學科別社會科學管理學
中文摘要 存貨問題已成為現今各行各業中最基本,也是最重要的課題之一,許多企業都希望擬定一個最適且最有效的存貨策略來達成最大的經濟效益。近年來,關於延遲付款這類的議題常被提出來討論,其原因在於實際的市場交易行為中,供應商往往會提供延遲付款的優惠給零售商,零售商在延遲付款期限中可利用已出售物品的收入,做為短期資金的來源。再者,供應商所提供的延遲付款期限長度也常與零售商的訂購數量有關,即訂購量越多,可以享有更長的付款期限優惠。

此外,對於生鮮蔬果、酒精類、化學製品和科技類等的產品,它們會隨著時間、溫度等環境的變化而逐漸發生退化、變質、揮發、腐敗或是損壞的現象。由於這些物品會產生額外的成本,因此將物品的退化性納入存貨模式中考量是必要的。再者,有時候企業為了減少存貨成本,在期初時會訂購較少的數量,而在期末容易產生缺貨的情形。一旦發生缺貨,顧客只好選擇等候補貨或是放棄購買;然而近幾年來,在全球化與完全競爭市場日漸普及的情況下,在市場中因為同質性產品多且顧客忠誠度低而流失所造成的銷售損失成本也逐漸被企業所重視。

本文主要探討允許缺貨並考慮延遲付款下的非瞬間退化物品之存貨系統,全文包括了兩個存貨模式,第二章為一個需求率固定且考慮延遲付款的非瞬間退化物品之存貨模式,模式中允許缺貨發生且缺貨期間的缺貨數量為完全欠撥。第三章則是延續第二章的研究,假設延遲付款期限長度與訂購數量有關,缺貨期間的缺貨數量為部份欠撥,並有一隨機的欠撥率。兩個模式皆以單位時間存貨相關總成本有最小值為目標,利用數學分析方法中的最佳化原理,證明最適解存在且為唯一。由於模式的複雜性,分別建立演算法輔助找出最適解;接著,舉數值範例說明求解過程並做主要參數值的敏感度分析。最後,第四章提出本研究的結論及未來研究的方向。
英文摘要 Nowadays, inventory problem has become one of the most basic and important topics in every walk of life. Many enterprises hope to draw up the optimal and the most effective inventory strategy in order to achieve the maximal economic benefits. In recent years, the topics about delay in payment have been proposed and discussed extensively. Since in real life, the supplier often offers the retailer an indulgence with delay in payment. In this situation, the retailer can gain sales revenue of items which is treated as short-term funds within the deadline of delay in payment. Moreover, the length of delay in payment which the supplier offers often is depend on the retailer’s ordering quantity. That is, the more quantities the retailer orders, the longer the length of delay in payment will be.

Besides, products such as fresh vegetables and fruits, alcohol, chemical products, technical products and so on will be deteriorated, denaturalized, evaporated, decayed or damaged gradually with the environment changes of time and temperature and others. Due to these types of items could produce additional costs, it is essential to consider the deterioration of items into inventory models. Furthermore, enterprises sometimes order fewer quantity at the initial period to reduce inventory costs but the shortages occur easily at the terminal period. Once the shortages occur, customers are only forced to wait for backorder or give up. In recent years, under the situations of globalization and complete competition market popularizes day after day, the issue of sales loss cost which is owing to high homogeneous products and low customers’ loyalties also has been respected by enterprises gradually.

In this thesis, two inventory models are developed for non-instantaneous deteriorating items with shortages under permissible delay in payments. In chapter 2, we establish an inventory model for non-instantaneous deteriorating items with constant demand rate and permissible delay in payment. In the model, shortages are allowed and the shortage quantities are completely backlogging. In chapter 3, we extend the model in chapter 2, it is assumed that the length of delay in payment depends on the ordering quantities and partially backlogging with a random backlogging rate. The objective is to find the minimum inventory relevant total cost per unit time for the two models. In mathematical analysis, we prove that the optimal solutions exist and are unique for the two models. Due to the complexity of the models, we establish algorithms to assist and find the optimal solution, respectively. Then, numerical examples are provided to illustrate the solution process and sensitivity analysis for primary parameters is carried out. Finally, concluding remarks and future research directions are proposed in chapter 4.
論文目次 目錄
頁次
目錄 I
表目錄 III
圖目錄 IV
使用符號一覽表 V
基本假設 VI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討 3
1.2.1 物品的退化 3
1.2.2 缺貨數量欠撥 5
1.2.3 延遲付款 6
1.3 研究方法 8
1.4 研究架構 8
第二章 完全欠撥且考慮延遲付款的非瞬間退化物品之經濟訂購量存貨模式 10
2.1 前言 10
2.2 符號與假設 11
2.3 模式的建立 11
2.4 模式的求解 20
2.5 數值範例 37
第三章 延遲付款期限與訂購量有關且具隨機欠撥率的非瞬間退化物品之經濟訂購量存貨模式 44
3.1 前言 44
3.2 符號與假設 45
3.3 模式的建立 46
3.4 模式的求解 57
3.5 數值範例 82
第四章 結論及後續研究方向 86
4.1 主要研究成果 86
4.2 未來研究方向 90
參考文獻 92
附錄一(A) 第二章系2.1與系2.2之證明 98
附錄一(B) 第三章系3.1與系3.2之證明 101

表目錄
頁次
表2.1 例題2.1的最適解表 38
表2.2 存貨模式中不同參數值變動下的敏感度分析(%) 40
表3.1 不同訂購數量下的付款期限 82
表3.2 例題3.1的求解過程 83
表3.3 存貨模式中主要參數值的變動對最適解的影響 84

圖目錄
頁次
圖2.1 完全欠撥之存貨水準與時間的關係圖 12
圖2.2 完全欠撥時Case 1的存貨水準與時間關係示意圖 15
圖2.3 完全欠撥時Case 2的存貨水準與時間關係示意圖 16
圖2.4 完全欠撥時Case 3的存貨水準與時間關係示意圖 17
圖2.5 完全欠撥時Case 4的存貨水準與時間關係示意圖 18
圖3.1 隨機欠撥率之存貨水準與時間的關係圖 47
圖3.2 隨機欠撥率時Case 1的存貨水準與時間關係示意圖 50
圖3.3 隨機欠撥率時Case 2的存貨水準與時間關係示意圖 51
圖3.4 隨機欠撥率時Case 3的存貨水準與時間關係示意圖 52
圖3.5 隨機欠撥率時Case 4的存貨水準與時間關係示意圖 53

參考文獻 參考文獻
中文文獻:
[1] 楊志德 (2007)。考慮非即時退化性物品的一些確定性存貨模式之研究,淡江大學管理科學研究所博士學位論文。
[2] 吳興漢 (2007)。變動需求下考慮允許缺貨且部份欠撥之非瞬間退化物品的存貨模式,淡江大學管理科學研究所碩士學位論文。
英文文獻:
[1] Abad, P. L. (1996). Optimal pricing and lot sizing under conditions of perishability and partial backordering. Management Science, Vol. 42, No. 8, pp. 1093-1104.
[2] Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering. Computers & Operations Research, Vol. 28, No. 1, pp. 53-65.
[3] Aggarwal, S. P. & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, Vol. 46, No. 5, pp. 658-662.
[4] Chakrabarty, T., Giri, B. C., & Chaudhuri, K. S. (1998). An EOQ model for items with Weibull distribution deterioration, shortages and trended demand:an extension of Philip’s model. Computers & Operations Research, Vol. 25, No. 7-8, pp. 649-657.
[5] Chang, C. T. & Teng, J. T. (2004). Retailer’s optimal ordering policy under supplier credits. Mathematical Methods of Operations Research, Vol. 60, No 3., pp. 471-483.
[6] Chang, H. J. & Dye, C. Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society, Vol. 50, No. 11, pp. 1176-1182.
[7] Chang, H. J. & Dye, C. Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, Vol. 32, pp. 345-352.
[8] Chang, H. J., Teng, J. T., Ouyang, L. Y. & Dye, C. Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, Vol. 168, No. 1, pp. 51-64.
[9] Chen, L. H. & Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied Mathematics and Computation, Vol. 182, pp. 711-726.
[10] Chung, K. J., Goyal, S. K., & Huang, Y. F. (2005). The optimal inventory policies under permissible delay in payments depending on the ordering quantity. International Journal of Production Economics, Vol. 95, pp. 203-213.
[11] Chung, K. J. & Liao, J. J. (2004). Lot-sizing decisions under trade credit depending on the ordering quantity. Computers and Operations Research, Vol. 31, pp. 909-928.
[12] Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistics Quarterly, Vol. 24, No. 2, pp. 257-268.
[13] Covert, R. P. & Philip, G. C. (1973). An EOQ model with Weibull distribution deterioration. AIIE Transactions, Vol. 5, No. 4, pp. 323-326.
[14] Dye, C. Y. (2007). Joint pricing and ordering policy for a deteriorating inventory with partial backlogging. Omega, Vol. 35, No. 2, pp. 184-189.
[15] Ghare, P. M. & Schrader, G. H. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, Vol. 14, pp. 238-243.
[16] Goyal, S. K. (1985). EOQ under conditions of permissible delay in payments. Journal of the Operational Research Society, Vol. 36, No. 4, pp. 335-339.
[17] Goyal, S. K. & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, Vol. 34, No. 1, pp . 1-16.
[18] Haley, C. W. & Higgins, R. C. (1973). Inventory policy and trade credit financing. Management Science, Vol. 20, No. 4, pp. 464-471.
[19] Hollier, R. H. & Mak, L. (1983). Inventory replenishment policies for deteriorating items in a declining market. International Journal of Production Research, Vol. 21, pp. 813-826.
[20] Jamal, A. M. M., Sarker, B. R. & Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. Journal of the Operational Research Society, Vol. 48, No. 8, pp. 826-833.
[21] Liao, J. J. (2007). On an EPQ model for deteriorating items under permissible delay in payments. Applied Mathematical Modelling, Vol. 31, pp. 393-403.
[22] Ouyang, L. Y., Chuang, K. W. & Chuang, B. R. (2004). An inventory model with non-instantaneous receipt and permissible delay in payments. International Journal of Information and Management Sciences, Vol. 15, No. 3, pp. 1-11.
[23] Ouyang, L. Y. & Dye, C. Y. (2005). An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. European Journal of Operational Research, Vol. 163, pp. 776-783.
[24] Ouyang, L. Y., Wu, K. S. & Yang, C. T. (2006). An study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers and Industrial Engineering, Vol. 51, pp. 637-651.
[25] Padmanabhan, G. & Vrat, P. (1995). EOQ models for perishable items under stock-dependent selling rate. European Journal of Operational Research, Vol. 86, No. 2, pp. 281-292.
[26] Pal, A. K., Bhunia, A. K. & Mukherjee, R. N. (2005). A marketing-oriented inventory model with three-component demand rate dependent on displayed stock level (DSL). Journal of the Operational Research Society, Vol. 56, pp. 113-118.
[27] Pal, A. K., Bhunia, A. K. & Mukherjee, R. N. (2006). Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level (DSL) and partial backordering. European Journal of Operational Research, Vol. 175, No. 2, pp. 977-991.
[28] Philip, G. C. (1974). A generalized EOQ model for items with Weibull distribution. AIIE Transactions, Vol. 6, pp. 159-162.
[29] Sarker, B. R., Mukherjee, S. & Balan, C. V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, Vol. 48, No. 3, pp. 227-236.
[30] Sarker, B. R., Jamal, A. M. M. & Wang, S. (2000). Supply chain models for perishable products under inflation and permissible delay in payment. Computers and Operations Research, Vol. 27, No. 1, pp. 59-75.
[31] Shah, V. R., Patel, N. C. & Shah, D. K. (1988). Economic ordering quantity when delay in payments of order and shortages are permitted. Gujarat Statistical Review, Vol. 15, No. 2, pp. 52-56.
[32] Shah, Y. K. (1977). An order-level lot size inventory model for deteriorating items. AIIE Transactions, Vol. 9, pp. 108-112.
[33] Tadikamalla, P. R. (1978). An EOQ inventory model for items with Gamma distribution. AIIE Transactions, Vol. 10, pp. 100-103.
[34] Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, Vol. 53, No. 8, pp. 915-918.
[35] Teng, J. T., Chang, C. T. & Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, Vol. 97, pp. 121-129.
[36] Wang, S. P. (2002). An inventory replenishment policy for deteriorating items with shortages and partial backlogging. Computers and Operations Research, Vol. 29, pp. 2043-2051.
[37] Wee, H. M. (1992). Perishable commodities inventory policy with partial backordering. Chung Yuan Journal, Vol. 12, pp. 191-198.
[38] Wee, H. M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, Vol. 22, pp. 345-356.
[39] Wu, K. S., Ouyang, L. Y. & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, Vol. 101, pp. 369-384.
[40] Yang, H. L. (2005). A comparison among various partial backlogging inventory lot-size models for deteriorating items on the basis of maximum profit. International Journal of Production Economics, Vol. 96, No. 1, pp. 119-128.
[41] Zhou, Y. W. & Lau, H. S. (2000). An economic lot-size model for deteriorating items with lot-size dependent replenishment cost and time-varying demand. Applied Mathematical Modelling, Vol. 24, No. 10, pp. 761-770.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信