淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2606200723552900
中文論文名稱 以多相流模式模擬掃流微過濾
英文論文名稱 Simulation of Cross-flow Microfiltration by Multiphase Flow Model
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 方巽禾
研究生英文姓名 Hsun-He Fang
電子信箱 694360388@s94.tku.edu.tw
學號 694360388
學位類別 碩士
語文別 中文
口試日期 2007-06-14
論文頁數 86頁
口試委員 指導教授-吳容銘
委員-李篤中
委員-黃國楨
委員-鄭東文
委員-蔡榮進
中文關鍵字 掃流微過濾  多相流  模擬  計算流體力學 
英文關鍵字 cross-flow microfiltration  multiphase flow  simulation  CFD 
學科別分類
中文摘要 本研究以多相流模式模擬掃流微過濾之濾餅成長情形,探討濾餅的性質與結垢的機制,並進行掃流過濾實驗,取得數據作為比較,並了解掃流微過濾之特性。實驗中使用平均孔徑為0.1 μm的醋酸纖維膜(Mixed cellulose ester)過濾平均粒徑為0.8 μm的聚甲基丙烯酸甲酯(PMMA)粒子。在兩相流動的掃流微過濾中,改變懸浮液濃度與掃流速度,實驗結果顯示,懸浮液濃度越高與掃流速度越慢的條件下濾速越低,平均孔隙度也會逐漸降低。而利用計算流體力學(Computational Fluid Dynamics, CFD)軟體FLUENT6.2的多相流模式模擬濾餅成長是可能的,並可利用受力分析推測結垢機制。最後,根據動態實驗分析結果,得知濾餅的平均孔隙度隨著過濾時間的增加而減小,而濾餅阻力則是隨著過濾時間的增加而增加。
英文摘要 The study simulates cross-flow microfiltration by multiphase flow model. In order to discuss cake property and fouling mechanism, we experiment on cross-flow microfiltration. The data can be compared with simulation results and realize the property of cross-flow microfiltration. A filter membrane, made of mixed cellulose ester, with a mean pore size of 0.1 μm is used to filter 0.8 μm PMMA particles. On two-phase flow while varying suspension concentration and cross-flow velocity, we show that filtration rate is lowered with higher suspension concentration and lower cross-flow velocity, while average porosity is lowered as well. Also, we use Computational Fluid dynamics, CFD, software FLUENT6.2’s multiphase flow model to estimate cake growth and use force analysis to figure out fouling mechanism. Lastly, using results obtained from dynamic experiment, we know that cake average porosity is lower with filtration time, however, cake resistance is higher.
論文目次 誌謝…………………………………………………………………………I
摘要…………………………………………………………………………II
目錄…………………………………………………………………………IV
圖目錄…………………………………………………………………VII
表目錄…………………………………………………………………X

第一章 緒論………………………………………………………………1
1-1 前言………………………………………………………………1
1-2 研究動機與目標…………………………………………………5

第二章 文獻回顧…………………………………………………………7
2-1 掃流過濾及其特性………………………………………………7
2-2 過濾阻塞模式……………………………………………………11
2-3 計算流體力學……………………………………………………15

第三章 理論………………………………………………………………17
3-1 掃流微過濾系統之受力…………………………………………17
3-2 阻力串聯模式……………………………………………………20
3-3 濾餅之空隙度……………………………………………………22
3-4 計算模式…………………………………………………………23
3-4-1 模擬邊界條件……………………………………………26
3-4-2 模擬幾何結構……………………………………………26
3-5 統御方程式……………………………………………………30
3-5-1 連續方程式………………………………………………30
3-5-2 動量方程式………………………………………………31
3-5-3 相之間交互作用力………………………………………32
3-5-4 多孔介質…………………………………………………33
3-6 數值方法………………………………………………………36

第四章 實驗裝置與步驟………………………………………………38
4-1 實驗物料…………………………………………………………38
4-2 實驗裝置…………………………………………………………40
4-3 實驗分析儀器……………………………………………………43
4-4 實驗步驟…………………………………………………………44

第五章 結果與討論………………………………………………………46
5-1 兩相流動中掃流過濾之特性……………………………………46
5-2 多相流模式之掃流過濾模擬……………………………………55
5-2-1 速度分佈…………………………………………………55
5-2-2 受力分析…………………………………………………58
5-2-3 多相流模式模擬與實驗之比較…………………………66
5-3 掃流過濾之動態分析……………………………………………71

第六章 結論………………………………………………………………77

符號說明……………………………………………………………………79

參考文獻……………………………………………………………………84

圖目錄

第一章
Fig. 1-1 The filtration spectrum………………………………………...2
Fig. 1-2 Schematics of dead-end filtration and cross-flow filtration…...4

第二章
Fig. 2-1 Schematic drawing of the fouling mechanisms……………...12

第三章
Fig. 3-1 Force exerted on a depositing particle in cross-flow microfiltration………………………………………………...18
Fig. 3-2 Control volume force analysis on the membrane surface..…..19
Fig. 3-3 The resistance of microfiltration……………………………..21
Fig. 3-4 The procedural steps of numerical simulation……………….25
Fig. 3-5 Conditional geometry of cross-flow filtration.………………27
Fig. 3-6 Structural and Meshed geometry of cross-flow filtration……29

第四章
Fig. 4-1 The SEM picture of PMMA powder(49,650X)………….38
Fig. 4-2(a) The top view SEM picture of the mixed cellulose ester membrane(50,000X).……………………………………..39
Fig. 4-2(b) The side view SEM picture of the mixed cellulose ester membrane(50,000X)……………………………………...40
Fig. 4-3 The schematic diagram of cross-flow filtration system……..41
Fig. 4-4(a) The picture of cross-flow filtration system……………….42
Fig. 4-4(b) The picture of cross-flow filtration units…………………42

第五章
Fig. 5-1 Decay of filtration rates during cross-flow microfiltration at v=0.1 m/s under different feed concentration………………...47
Fig. 5-2 Decay of filtration rates during cross-flow microfiltration at v=0.2 m/s under different feed concentration………………...48
Fig. 5-3 Decay of filtration rates during cross-flow microfiltration at C0=0.2wt% under different cross-flow velocity……………...50
Fig. 5-4 Decay of filtration rates during cross-flow microfiltration at C0=0.3wt% under different cross-flow velocity……………...51
Fig. 5-5 The relation between steady flux and feed concentration under different cross-flow velocity………………………………….53
Fig. 5-6 The relation between average porosity and feed concentration under different cross-flow velocity…………………………...54
Fig. 5-7 Vectors of velocity above membrane surface 0.5 mm
(v = 0.2 m/s, C0 = 0.2 wt%, ΔP = 25 kPa, t = 7200 s)……..56
Fig. 5-8 Contour of water velocity at different level
(v = 0.2 m/s, C0 = 0.2 wt%, ΔP = 25 kPa, t = 7200 s)……..57

Fig. 5-9 The relation between force and distance of flow direction during cross-flow microfiltration(v = 0.1 m/s, C0 = 0.2 wt%,
ΔP =25 kPa)…………………………………………………59
Fig. 5-10 The relation between force and distance of flow direction during cross-flow microfiltration(v = 0.2 m/s, C0 = 0.2 wt%,
ΔP = 25 kPa)…………………………………………………61
Fig. 5-11 The relation between force and distance of flow direction during cross-flow microfiltration(v = 0.3 m/s, C0 = 0.2 wt%,
ΔP = 25 kPa)…………………………………………………62
Fig. 5-12 The relation between force and distance of flow direction on membrane surface under different cross-flow velocity……… 63
Fig. 5-13 Images of filtration cake at different cross-flow velocity
(C0 = 0.2 wt%, ΔP = 25 kPa)………………………………..64
Fig. 5-14 The relation between force and distance of flow direction on membrane surface under different cross-flow velocity by single-phase flow……………………………………………..65
Fig. 5-15 The relation between surface integral of solid volume fraction and height under different feed concentration………………...67
Fig. 5-16 Comparison of simulation and experiment cake thickness under different feed concentration……………………………68
Fig. 5-17 Comparison of simulation and experiment cake weight under different feed concentration…………………………………..69
Fig. 5-18 Comparison of simulation and experiment average porosity under different feed concentration……………………………70
Fig. 5-19 The time evolution of cake weight per unit area and cake thickness during cross-flow microfiltration…………………72
Fig. 5-20 The time evolution of average porosity and cake resistance during cross-flow microfiltration……………………………74
Fig. 5-21 Images of filtration cake at different time
(ΔP = 25 kPa, v = 0.2 m/s, C0 = 0.2 wt%)………………….75
Fig. 5-22 The SEM pictures of filtration cake at different time
(ΔP = 25 kPa, v = 0.2 m/s, C0 = 0.2 wt%)(10,000X)…….76

表目錄

Table 2-1 The characteristics of fouling mechanisms………………..14
Table 4-1 The operating conditions…………………………………..43
參考文獻 Baker, R. J., A. G. Fane, C. J. D. Fell and B. H. Yoo, “Factors affecting flux in crossflow filtration”, Desalination, 53, p81-96, (1985)

Belfort, G., R. H., Davis, and A. L., Zydney, “The behavior of suspensions and macromolecular solutions in crossflow microfiltration”, Journal of Membrane Science, 96, p1-58, (1994)

Blake, N. J., I. W., Cumming and M., Streat, “Prediction of steady state crossflow filtration using a force balance model”, Journal of Membrane Science, 68, p205-216, (1992)

Chiu, T. Y., and A. E. James, “Critical flux enhancement in gas assisted microfiltration”, Journal of Membrane Science, 281, p274-280, (2006)

Hermas, P. H., and H. L., Bredee, Journal of floc. Ind., 10, (1936)

Hermia J., “Constant pressure blocking filtration laws-application to power-law non-newtonian fluids,” Transactions of the Institution of Chemical Engineering, 60, p183-187, (1982).

Hwang, K. J., M. C., Yu, and W. M., Lu, “Migration and deposition of submicron particles in crossflow microfiltration”, Separation Science and Technology, 32, p2723-2747, (1997)
Li, H., A. G., Fnae, H. G. L., Coster, and S., Vigneswaran, “Observation of deposition and removal behavior of submicron bacteria on the membrane surface during crossflow microfiltration”, Journal of Membrane Science, 217, p29-41, (2003)

Lu, W. M., and S. C., Ju, “Selective Particle Deposition in Cross-Flow Filtration”, Separation Science and Technology, 24, p517-540, (1989)

Malek, F., J. L., Harris, and F. A., Roddick, “Interrelationship of photooxidation and microfiltration in drinking water treatment”, Journal of Membrane Science, 281, p541-547, (2006)

Martin, N., and M., Luker, “Cross-Flow fitration in practice”, Chemical Engineer, p14, (1987)

Murkes, and Jakob, “ Parafiltration - a new advanced filtration technology”, Filtration and Separation, 20, Jan-Feb, p21, (1983)

Murkes, J., and C. Carlsson, “Crossflow filtration theory and practice”, John Wiley&Sons, New York, (1988)

Narasimha, M., R., Sripriya, and P.K., Banerjee, “CFD modelling of hydrocyclone—prediction of cut size”, International Journal of Mineral Processing , 75, p53-68, (2005)

Sivertsen, B.R., and N., Djilali, “CFD-based modelling of proton exchange membrane fuel cells”, Journal of Power Sources, 141, p65-78, (2005)

Teng, M. Y., S. H., Lin, C. Y., Wu, and R. S., Juang, “Factors affecting selective rejection of proteins within a binary mixture during cross-flow ultrafiltration”, Journal of Membrane Science, 281, p103-110, (2006)

Tu, J.W., C. D., Ho, and H. M., Yeh, “The analytical and experimental studies of the parallel-plate concurrent dialysis system coupled with ultrafiltration”, Journal of Membrane Science, 281, p676-684, (2006)

Yang, Y. T., and Y. X., Wang, “Three-dimensional numerical simulation of an inclined jet with cross-flow”, International Journal of Heat and Mass Transfer, 48, p4019-4027, (2005)

FLUENT 6.2 User’s Guide Documentation, Fluent Inc., Lebanon, New Hampshire, (2005)

呂維明、呂文芳 編著,”過濾技術”,高立圖書有限公司,(1994)

呂維明 編著,”固液過濾技術”,高立圖書有限公司,(2004)

童國倫、李雨霖、呂坤宗,「計算流體力學簡介及其在化工上之應用 (下)」,化工技術,124,p216-230,(2003)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-06-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-06-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信