淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2606200617115400
中文論文名稱 固態之聲子與電聲子計算:密度泛函微擾理論之研究
英文論文名稱 Phonon and electron-phonon coupling calculations in solids : Density-Functional Perturbation Theory study
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 94
學期 2
出版年 95
研究生中文姓名 李世綸
研究生英文姓名 Shih-Lun Lee
學號 692180192
學位類別 碩士
語文別 中文
口試日期 2006-06-14
論文頁數 72頁
口試委員 指導教授-薛宏中
委員-彭維鋒
委員-李哲倫
中文關鍵字 聲子  超導相變溫度  密度泛函微擾論 
英文關鍵字 phonon  electron-phonon coupling  linear response 
學科別分類 學科別自然科學物理
中文摘要 元素Te,Se,Zr隨著壓力的變化具有豐富的結構相變及超導性質,利用密度泛函理論與密度泛函擾理論,研究其電子結構與晶格振動質,由於超導相變溫度和電子與聲子交互作用有關,所以利用Migdal-Eliashberg理論探討元素Te,Se,Zr在立方晶體(bcc)結構相之超導性質,發現隨著壓力的減少,超導相變溫度上升,與實驗結果一致,其超導相變溫度上變的原因,來自於聲子軟化(Phonon softening)。本論文除了電聲子耦合計算外,亦對微波材料BaMg1/3(Ta/Nb2/3O3,利用密度泛函微擾理論,計算其計算其Gamma點的聲子與振動模式,分析Raman實驗與FTIR實驗。
英文摘要 The elements Te, Se, Zr have rich structural phase transitions and superconductive properties under pressure. With density functional theory and linear response scheme, we study electronic structures and vibrational properties, respectively. Since superconducting critical temperature Tc relates to electron-phonon coupling, so we study the
superconductivity of Bcc Te, Se, Zr within Migdal-Eliashberg theory. The calculated superconducting critical temperatures under compression are in good agreement with experiment results, and Tc increases with decreasing pressure, which mainly attributed to the phonon softening. In this thesis, we also study the phonon and vibrational normal modes at Gamma point on microwave material BaMg1/3(Ta/Nb)2/3O3, and assign the corresponding normal modes in Raman and FTIR experiments.
論文目次 第一章 導論 1
1-1研究動機 1
1-2論文架構 4
第二章 基本理論與模擬方法 5
2-0材料模擬方法導論 5
2-1 Density Functional Theory(密度泛函理論) 6
2-1-1 Hohenberg-Kohn 定理 6
2-1-2 Kohn Sham equation 7
2-1-3 交換相干能 8
2-1-4 週期性邊界條件 9
2-1-5 虛位勢 (Pseudopotential) 11
2-2密度泛函微擾理論與聲子計算 13
2-2-1 線性響應方法(linear response) 14
2-3 電子與聲子交互作用(electron-phonon interaction) 22
2-4 Raman光譜與紅外線吸收光譜學 28
第三章 Bcc結構Te Se及Zr 之電聲子計算 32
3-0  Te,Se及Zr之材料結構介紹 32
3-1 Bcc結構Te之電聲子計算 33
3-1-1 電子結構計算 33
3-1-2 聲子計算 35
3-1-3 電聲子計算 37
3-2 Bcc結構Se之電聲子計算 42
3-2-1 電子結構計算 42
3-2-2 聲子計算 43
3-2-3 電聲子計算 46
3-3 Bcc結構Zr之電聲子計算 51
3-3-1 電子結構計算 51
3-3-2 聲子計算 53
3-3-3電聲子計算 55
第四章 BaMg1/3(Ta/Nb)2/3O3 之聲子計算..........59
4-0 晶格結構介紹...............................................................................................59
4-1 電子結構計算...............................................................................................60

4-2 點聲子計算..............................................................................................63
第五章 結論......................................................70
Reference ..............................................................71
圖表目錄
圖2-1 虛位能示意圖.................................................................................12
圖3-1-1 不同壓力下bcc Te 的電子能態密度.........................................34
圖3-1-2 不同壓力下bcc Te 的電子能帶結構.......................................34
圖3-1-3 於不同壓力下之Bcc Te 之聲子頻譜.......................................36
圖3-1-4 N 點到Γ 點和Γ 到H 點間之bcc Te 聲子頻譜.....................36
圖3-1-5 於不同壓力下,bcc Te 之聲子態密度....................................37
圖3-1-6 不同壓力下,隨波向量變化的Phonon linewidth...................39
圖3-1-7 不同壓力下,隨波向量變化的qj λ
與聲子頻譜之比較.........40
圖3-1-8 不同壓力下,超導相變溫度理論計算,其他理論計算[18]與實
驗[19]之比較.........................................................................................41
圖3-2-1 不同壓力下bcc Se 的電子能態密度.......................................42
圖3-2-2 不同壓力下bcc Se 的電子能帶結構.......................................43
圖3-2-3 於不同壓力下之Bcc Se 之聲子頻譜.......................................44
圖3-2-4 N 點到Γ 點間之bcc Se 聲子頻譜.........................................45
圖3-2-5 於不同壓力下,bcc Se 之聲子態密度....................................45
圖3-2-6 不同壓力下,隨波向量變化的Phonon linewidth...................48
圖3-2-7 不同壓力下,隨波向量變化的qj λ
與聲子頻譜之比較.........49
圖3-2-8 不同壓力下,bcc Se 超導相變溫度理論計算與其他計算[20]之
比較......................................................................................................50
圖3-3-2 不同壓力下bcc Zr 的電子能態密度........................................52
圖3-3-3 不同壓力下bcc Zr 的電子能帶結構........................................52
圖3-3-4 不同壓力下之bcc Zr 之聲子頻譜............................................54
圖3-3-5 不同壓力下之bcc Zr 之聲子態密度........................................54
圖3-3-6 bcc Zr 在不同壓力下隨波向量變化的Phonon linewidth .......57
圖3-3-7 不同壓力下,隨波向量變化的 qj λ 與聲子頻譜之比較.......57
圖3-3-8 理論計算與實驗[17]之bcc Zr 壓力與超導相變溫度Tc 關係..58
圖4-0 BaMg1/3(Ta/Nb)2/3O3 晶格結構圖.................................................59
圖4-1-1 BMT 與BMN 中,Ta-O 與Nb-O 八面體之鍵長。...............61
圖4-1-2 BaMg1/3(Ta/Nb)2/3O3 的電子態密度(DOS) .............................61
表格3-1-1 不同壓力下之bcc Te 電聲子計算.......................................40
表格3-1-2 文獻[18]中不同壓力下之bcc Te 電聲子計算.......................41
表格3-2-1 不同壓力下之bcc Se 電聲子計算.......................................48
表格3-2-2 其他文獻中[20],不同壓力下之bcc Se 電聲子計算...........49
表格3-3-1 不同壓力下,bcc 結構之Zr 電聲子計算...........................58
表格4-1-1 BaMg1/3Ta2/3O3 之晶格結構.................................................62
表格4-1-2 BaMg1/3Nb2/3O3 之晶格結構................................................62
表4-2-1 BMT 與BMN 之點聲子計算的g mode 與Raman 實驗.......66
表4-2-2 BMT 與BMN 中Ta 與Nb 原子的Born effective charge.......66
表4-2-3 BMT 與BMN 中O 原子的Born effective charge...................67
表4-2-4 BMT 之點聲子計算的u mode 與FTIR 實驗......................68
表4-2-5 BMN 之點聲子計算的u mode 與FTIR 實驗.....................69
參考文獻 [1] Richard M. Martin, “Electronic structure”, Chapter 6, 2004
[2] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140:1133, 1965
[3] Richard M. Martin, “Electronic structure”, Chapter 8, 2004
[4] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopouios,“Iterative minimization techniques for ab initio total energy calculations molecular dynamics and conjugate gradients” Phys. Rev. Mod. 64:1045, 1992
[5] A. K. Ghatak and L. S. Kothari, “An introduction to lattice dynamics”, Chapter 5, 1971
[6] Stefano Baroni, Stefano de Gironcoli, and Andrea Dal Corso, and Paolo Giannozzi, “Phonons and related crystal properties from density-functionalperturbation theory” Phys. Mod. Rev. 73:515, 2001
[7] F. Marsiglio and J. P. Carbotte, “Electron-phonon superconductivity”, arXiv. cond-mat. 0106143, 2001
[8] W. L. McMillan, “Transition temperature of strong-coupled superconductors”, Phys. Rev. 167:331, 1968
[9] “儀器分析” CH6, Ch7, 柯以侃主編,吳明珠校定
[10] Y. Akahama, M. Kobayashi, and H. Kawamura, “Pressure-induced superconductivity and phase transition in selenium and tellurium”, Solid State Commun. 84:803, 1992.
[11] Y. Akahama, M. Kobayashi, and H. Kawamura, “Structural studies of pressure-induced phase transitions in selenium up to 150 GPa”, Phys. Rev. B 47:20, 1993
[12] Y. Ohmasa, I. Yamamoto, M. Yao, and H. Endo, “Structure and Electronic Properties of Te-Se Mixtures under High Pressure”, J. Phys. Soc. Jpn. 64:766, 1995
[13] Ahuja R, Wills J M, Johansson B and Eriksson O, “Crystal structures of Ti, Zr, and Hf under compression: Theory”, Phys. Rev. B 48 16269, 1993
[14] Grad G B, Blaha P, Luitz J, Schwarz K, Guillermet A F and Sferco S J, “Electronic structure and chemical bonding effects upon the bcc to Ω phase transition: Ab initio study of Y, Zr, Nb, and Mo”, Phys. Rev. B 62 12743, 2000
[15] Hui Xia, Duclos S J, Ruoff A L and Vohra Y K ,New high-pressure phase transition in zirconium metal, Phys. Rev. Lett. 64 204, 1990.
[16] Hui Xia, Ruoff A L and Vohra Y K, “Temperature dependence of the ω-bcc phase transition in zirconium metal”, Phys. Rev. B 44 10374, 1991.
[17] Y. Akahama, M. Kobayashi, and H. Kawamura, “Superconductivity and phase transition of Zirconium under high pressure up to 50 GPa” JPSJ. 59:3843, 1990
[18] F. Mauri., O. Zakharov, S. d. Gironcoli., S. G. Louie., M. L. Cohen., “Phonon softening and superconductivity in tellurium under pressure” Phys. Rev. Lett. 77:1151, 1996.
[19] Y. Akahama, M. Kobayashi, and H. Kawamura, “Pressure –induced superconductivity and phase transition in selenium and tellurium”Solid State Commun. 84:803, 1992.
[20] M. Otani and N. Suzuki, “Structural and superconducting transition in selenium at high pressure”,Phys. Rev B. 63:104516, 2000
[21] Birch F, “Finite Elastic Strain of Cubic Crystals”, Phys. Rev. 71:809, 1947
[22] Janaswamy, S.;Murthy, G.S.;Dias, E.D.;Murthy, V.R.K., Materials. Letters. 55:414, 2002
[23] Joseph, J.;Dias;Vimala, T.M.;Murthy, V.R.K. Japanese Journal of Applied Physics, Part 1, 41:3010, 2002
[24] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin.,”Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics:I. Raman spectroscopy”, JAP. 94:3360, 2003
[25] Y. C. Chen, H. F. Cheng, H. L. Liu.,C. T. Chia, and I. N. Lin.,”Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics:I. Raman spectroscopy”, JAP. 94:3365, 2003
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信