淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2603201316331500
中文論文名稱 行動隨意網路中多播路由之探討
英文論文名稱 Research on multicast routing in Mobile Ad-hoc Networks
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 朱庭毅
研究生英文姓名 Ting-Yi Chu
學號 698450425
學位類別 碩士
語文別 中文
口試日期 2013-01-07
論文頁數 68頁
口試委員 指導教授-莊博任
委員-李維聰
委員-陳省隆
中文關鍵字 隨意行動網路  樹狀網路  標籤式網路  多播路由 
英文關鍵字 Mobile Ad-hoc Network (MANET)  tree based  label based  multicast routing 
學科別分類 學科別應用科學電機及電子
中文摘要 路由是組成網路的一個基礎,為了讓MANET實現,高效和有效的路由協定是一個關鍵的議題。基本上路由協定可先畫分成兩大類,單播(Unicast)和多播(Multicast)。在MANET的應用領域中,快速的開發(Rapid development)和動態的重建(Dynamic reconfiguration)是很重要的。像是戰場上的軍用設施、醫療研究、救援地點,或是參與者需要使用移動裝置並且交換訊息的場合。這些應用使得多播操作變得受到重視。像是在需要傳送多件副本資料時,即可節省很多時間。並且降低傳輸消耗(Transmission overhead)和能量消耗(Power consumption)。因此多播路由在MANET中扮演著一個極為重要的角色。
在多播路由協定中,以一個多播群組來看,拓樸的建立、群組結構的維護、資料傳輸的方式、資料傳輸路徑的途徑都是需要探討的議題。在此大方向底下,我們以拓樸建立的初始化以及資料傳輸路徑的優化為優先考量因素。因為在此階段所構成的重要性較為明顯,一個好的路由即使在傳輸方式或演算法上有較好的成效,但是在拓樸建立初期若是沒有好的基礎,也只是在挽回拓樸資訊的缺陷和誤差。再來則是資料傳輸路徑的選擇,當資料流量變大,網路頻寬固定的情況下,在路徑的選擇上變是很重要的一環。
在本論文中,以模擬結果來證明所提出之假設。我們提出的方法中,控制封包的總量,會比舊有的方法來的多,因為我們在路徑的維護上,節點會周期性廣播控制封包來做路徑的維護,並且每個節點會依控制封包來維護鄰居結點表。雖然當節點數目或群組數目較少的時候表現不亮眼,但是當數量增加,我們機制的啟用,所達到的效能可以彌補在過多控制封包使得傳輸延遲時間增加的損失。也因如此,我們在封包傳輸的成功率上,呈現出較高的表現。
整體來說,我們在控制封包的使用上,相對消耗較多資源,但是我們以額外的控制封包來增強我們在正確路徑的建立以及路徑的最佳化,以達成整體效能之效果。
英文摘要 Mobile Ad-hoc Network (MANET) usually apply mobile devices communicate with others, without additional base station. Along with time vicissitude, technical developed, in the same area, the mobile devices increased, so communication between devices become much complicated. Data bandwidth is constant, but data flow increased, it makes usage of control packet and maintain of transmission path between nodes become an important issue. How to make data transmission and path maintain more efficient in incremental nodes with better routing protocol is a good research topic.
There are many problems need to overcome in routing protocol. According to difference of topology in MANET, it can be separated into mesh based and tree based. Based on mesh, in the beginning of building topology and establish routes need lots of control packets to set up and maintain. It has good performance on stability of path and repairing invalid path. In tree based, it has a core node to manage members in a group. It means in every group there is a node to maintain its members. Control packets will be reduced greatly. The path between source and destination is single, it will be impact when the path invalid. On the other hand, in mesh based, each node has one or more path to source or destination and it can change path in time then keeping transmitting data. Relatively, it needs more control packet on maintain path and topology, thereby affects transmission of data flow. In recent year, data flow and receiver are tremendously increased, the excessive control packets affect not only transmission of data but delay time of delivery even ratio of successful delivery. Therefore, it is good research topic to use tree based on routing even with path stability problem if the cost of path building and maintain can be less than the cost of repairing invalid path.
In this paper, we proposed an advanced label based and tree based multicast routing protocol. With new label mechanism when new topology builds, and backup path selects. This improvement reduces control packets and maintain data transmission path with backup route. When data flow dramatic increased we still keep good delivery ratio. In simulation results, our control packets are a little more than other method, but our delivery ratio keeps in a good statue even better than others. This is also our approach highlights
論文目次 目 錄
第一章 序論.................... 1
1.1 簡介與研究動機............ 1
1.2 論文架構................. 3
第二章 背景相關.................. 5
2.1 MANET中的路由協定......... 5
2.2 MANET中的樹狀和網狀式拓樸.. 8
2.2.1 網狀拓樸的多播協定......... 8
2.2.2 前綴標籤式高效多播路由..... 16
2.3 多播路由的路徑維護......... 18
2.4 多播路由的備用路徑......... 19
2.4.1 ODMRP的備用路徑.......... 20
2.4.2 POEM的路徑維護........... 21
2.5 近年來多播路由趨勢......... 22
第三章 新方法.................... 24
3.1 動機.................... 24
3.2 方法流程................. 25
3.2.1 拓樸建立................. 26
3.2.2 資料傳輸................. 29
3.2.3 維護.................... 31
3.3 備用路徑................. 37
3.3.1 簡介.................... 37
3.3.2 新機制流程............... 38
3.3.3 新機制範例............... 40
3.4 備用路徑的評比............ 42
第四章 模擬與比較................ 45
4.1 模擬環境................. 45
4.2 模擬結果................. 48
4.2.1 隨機移動節點.............. 50
4.2.2 源點數目增加.............. 52
4.2.3 多個多播群組.............. 55
4.2.4 群組底下成員增加.......... 57
4.2.5 節點速度改變.............. 60
第五章 結論..................... 64
5.1 結論.................... 64
參考文獻......................... 66

圖目錄
圖2.1 STAMP的運作方式............. 11
圖2.2 STAMP維護方式1............. 11
圖2.3 STAMP維護方式2............. 12
圖2.4 ODMRP的傳輸模式............. 13
圖2.5 ODMRP架構概念.............. 14
圖2.6 ODMRP形成多路徑路由方式...... 15
圖2.7 POEM的標記方式.............. 17
圖2.8 多播路由分類圖.............. 19
圖2.9 ODMRP備用路徑概念........... 21

圖3.1 拓樸建立流程圖.............. 26
圖3.2 拓樸建立範例圖1............. 27
圖3.3 拓樸建立範例圖2............. 28
圖3.4 資料傳輸流程圖.............. 29
圖3.5 資料傳輸範例圖1............. 30
圖3.6 資料傳輸範例圖2............. 30
圖3.7 資料傳輸範例圖3............. 31
圖3.8 節點加入流程圖.............. 32
圖3.9 節點加入範例圖1............. 33
圖3.10 節點加入範例圖2............ 33
圖3.11 節點加入範例圖3............ 34
圖3.12 路徑損毀維護流程圖.......... 35
圖3.13 路徑損毀維護範例圖1......... 36
圖3.14 路徑損毀維護範例圖2......... 36
圖3.15 新機制標籤方式............. 38
圖3.16 新機制啟動流程圖............ 39
圖3.17 新機制範例1................ 40
圖3.18 新機制範例2................ 41
圖3.19 機制效能模擬圖............. 43

圖4.1 傳輸成功率.................. 50
圖4.2 傳輸延遲時間................ 51
圖4.3 控制封包負載量.............. 51
圖4.4 傳輸成功率.................. 53
圖4.5 傳輸延遲時間................ 53
圖4.6 控制封包負載量.............. 54
圖4.7 傳輸成功率.................. 55
圖4.8 傳輸延遲時間................ 56
圖4.9 控制封包負載量.............. 56
圖4.10 傳輸成功率................. 58
圖4.11 傳輸延遲時間............... 58
圖4.12 控制封包負載量............. 59
圖4.13 傳輸成功率................. 60
圖4.14 傳輸延遲時間............... 61
圖4.15 控制封包負載量............. 61

表目錄
表3.1方法比較表格................. 24

表4.1模擬環境參數設定.............. 46




參考文獻 [1] H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad-hoc networks,” IEEE Commun. Mag., vol. 40, no. 10, Oct. 2002, pp. 70–75.
[2] M. Younis and S. Z. Ozer, “Wireless ad-hoc networks: Technologies and challenges,” Wireless Commun. Mobile Computing, vol. 6, no. 7, Nov. 2006, pp. 889–892.
[3] S. Guo and O. Yang, “Energy-aware multicasting in wireless ad-hoc networks: A survey and discussion,” Computer Commun., vol. 30, no. 9, June 2007, pp. 2129–2148.
[4] L. Junhai and Y. Danxia, et al., “Research on routing security in MANET,” Application Research of Computers, vol. 25, no. 1, Jan. 2008, pp. 243– 245.
[5] X. Chen and J. Wu, “Multicasting techniques in mobile ad-hoc networks,” The Handbook of Ad-hoc Wireless Networks, 2003, pp. 25–40.
[6] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale link state on quality-of-service routing,” IEEE/ACM Trans. Networking, vol. 9, no. 2, Apr. 2001, pp. 162–176.
[7] J. S. Chou, C. H. Lin, and C. H. Chiu, “An identity-based scheme for ad-hoc network secure routing protocol from pairing,” WSEAS Trans. Computers, vol. 5, no. 6, June 2006, pp. 1214–1221.
[8] C. Liu, Y. Shu, and Y. Zhou, et al., “A comparison of DSR, MSR and BSR in wireless ad-hoc networks,” SPIE, vol. 6011, 2005, pp. 601–610.
[9] M. K. Marina and S. R. Das, “Ad-hoc on-demand multi-path distance vector routing,” Wireless Commun. Mobile Computing, vol. 6, no. 7, Nov. 2006, pp. 969–988.
[10] C. W. Wu and Y. C. Tay, “AMRIS: A multicast protocol for ad-hoc wireless networks,” in Proc. IEEE MILCOM, vol. 1, 1999, pp. 25–29.
[11] E. M. Royer and C. E. Perkins, “Multicast operation of the ad-hoc on demand distance vector routing protocol,” in Proc. ACM MOBICOM, Aug. 1999, pp. 207–218
[12] J. Xie, R. Rajesh, and A. McAuley, et al., “AMRoute: Ad-hoc multicast routing protocol,” Mobile Networks and Applications, Multipoint Communication in Wireless Mobile Networks, vol. 7, no. 6, Dec. 2002, pp. 429–439.
[13] J. J. Garcia-Luna-Aceves and E. L. Madruga, “Core-assisted mesh protocol,” IEEE J. Select. Areas Commun., vol. 17, no. 8, 1999, pp. 1380–1394.
[14] M. Gerla, S. J. Lee, and W. Su, “On-demand multicast routing protocol (ODMRP) for ad-hoc networks,” Internet draft, draft-ietf-manet-odmrp-02.txt, 2000.
[15] L. Ji and M. S. Corson, “A lightweight adaptive multicast algorithm,” in Proc. IEEE GLOBECOM, 1998, pp. 1036–1042.
[16] K. Chen and K. Nahrstedt, “Effective location-guided tree construction algorithms for small group multicast in MANET,” in Proc. IEEE INFOCOM, , vol. 3 2002, pp. 1180–1189.
[17] L. Ji and M. S. Corson, “Differential destination multicast-A MANET multicast routing protocol for small groups,” in Proc. IEEE INFOCOM, 2001, vol. 2, pp. 1192–1201.
[18] C. M. Shu, “Pro-active Route Maintenance with Adaptive Buffer Zone in MAODV,” 2007
[19] L. Navaravong et al., "Optimizing Network Topology to Reduce Aggregate Traffic in Systems of Mobile agents," Proc. Int’l. Network Analysis Conf., Gainesville, FL, Dec. 2011; http://wireless.ece.ufl.edu/jshea/pubs/BomNetwork2011.pdf.
[20] L. Navaravong, Z. Kan, J. M. Shea, and W. Dixon, "Formation reconfiguration for mobile robots with network connectivity constraints," IEEE Network, Vol.26, Aug. 2012, pp. 18-24
[21] L, Lin, Q. Wu, "A Label Based Greedy Algorithm for Minimum Energy Consumption Multicast Routing in Ad Hoc Networks," Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2011 International Conference on, pp.113-117
[22] J. J. Garcia-Luna-Aceves and D. Sampath, “Scalable Integrated Routing Using Prefix Labels and Distributed Hash Tables for MANETs,” Proc. IEEE Int’l. Conf. Mobile Ad Hoc and Sensor Sys., Macau SAR, P.R.C., Oct. 2009, pp. 188–98.
[23]J. J. Garcia-Luna-Aceves and D. Sampath. Efficient multicast routing in MANETs using prefix labels. In Proc. IEEE Int. Conf. Computer Commun. and Networks (ICCCN), pages 1–8, , Aug. 2009
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-03-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-03-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信