§ 瀏覽學位論文書目資料
系統識別號 U0002-2602202111361900
DOI 10.6846/TKU.2021.00695
論文名稱(中文) 群體感應抑制在移動床膜生物反應器之濾膜阻塞控制研究
論文名稱(英文) Evaluating the effect of quorum quenching on mitigation of membrane fouling in moving bed membrane bioreactors
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 1
出版年 110
研究生(中文) 黃彥博
研究生(英文) Yan-Bo Huang
學號 607480224
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-01-23
論文頁數 82頁
口試委員 指導教授 - 簡義杰
委員 - 童心欣
委員 - 林居慶
關鍵字(中) 膜生物反應器
移動床膜生物反應器
群體感應
群體感應抑制
濾膜阻塞
胞外聚合物
可溶性微生物產物
關鍵字(英) Membrane bioreactor(MBR)
moving bed membrane bioreactor(MBMBR)
quorum sensing(QS)
quorum quenching(QQ)
membrane fouling
Extracellular polymeric substance(EPS)
soluble microbial products(SMP)
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:
  移動床膜生物反應器(moving bed membrane bioreactor, MBMBR)結合了移動床生物反應器(Moving bed biofilm reactor, MBBR)及膜生物反應器(membrane bioreactor, MBR),具有增加生物量、提高有機負荷量、佔地面積小等優點,近年來在廢水處理領域越來越受到關注,但膜生物反應器的發展受限於濾膜使用容易堵塞之缺點。群體感應抑制法(Quorum Quenching, QQ)為近年來發展用以控制濾膜阻塞之技術,透過抑制群體感應(Quorum Sensing, QS)系統使微生物減少胞外聚合物(extra-cellular polymeric substance, EPS)及可溶性微生物產物(soluble microbial products, SMP)之產生,藉以延緩濾膜堵塞。群體感應抑制法有很多種手段,包括了使用QQ酵素法、添加QQ菌和QS抑制劑,而其中以添加能降解訊息分子AHLs 的QQ菌方法最廣為使用。雖然MBMBR相較於MBR已被報導具有延緩濾膜堵塞的能力,但也有文獻指出相反的結果。儘管MBMBR及群體感應抑制法均被提出具有控制濾膜堵塞的潛力,但目前尚未有文獻探討結合MBMBR與QQ法對延緩濾膜堵塞的成效。
  因此,本實驗的目的是結合MBMBR以及群體感應抑制法(主要採用Rhodococcus sp. BH4菌株),以評估系統延緩濾膜堵塞的效能,實驗上主要分為三個部分:(1)比較MBR及MBMBR濾膜堵塞速度,為了近一步探討延緩濾膜的可能原因,分別測試濾膜與載體間有無加入隔板的透膜壓力變化,(2)優化實驗參數及改良固定化方法,調整出適合的實驗的通量以及改良出在反應槽中較穩定的QQ球,(3)比較分別加入QQ球(QQ-MBMBR)及空珠(VB-MBMBR)的反應槽中,濾膜堵塞的速度。實驗過程除了探討施用群體感應抑制法對透膜壓力及EPS、SMP濃度及性質之影響,也同時觀察施用QQ法對污水處理效能的影響。
  本研究發現,在MBR和MBMBR的實驗中,MBMBR有些微延緩濾膜堵塞的效果,延緩了約5 kPa的透膜壓力,在MBR及MBMBR將隔開濾膜及載體的隔板移開的狀況下,跟有隔板的反應槽相比,發現MBMBR受到載體的物理刮除,歷經54天都不會上升至40 kPa。在高通量下(33.5 LMH),加入QQ球只延緩1到2天的時間。在QQ-MBMBR及VB-MBMBR的比較中,在第一輪實驗中兩反應槽的透膜壓力沒有差異,但在第二輪實驗的開始前,發現反應槽底部堆積大量污泥,經過均勻混和後,QQ-MBMBR相較於VB-MBMBR延緩了3天的時間,但在後續的實驗中,沒有再現性,在實驗最後發現反應槽污泥的循環不佳,導致槽底堆積污泥,使得在實驗期間測得的EPS及SMP沒有顯著的差異,可能是延緩效果不明顯的原因。建議之後的實驗中,透過設計或加裝外部循環,改善反應槽的污泥沉澱問題。另外在實驗期間,QQ-MBMBR與VB-MBMBR對於有機物及氨氮去除率皆在90%以上,總氮去除率在30%左右,兩個系統間沒有處理效率上的差異。
英文摘要
Moving bed membrane bioreactor (MBMBR) technology combines moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR). The advantages of MBMBR include containing high biomass thus is compatible for elevated organic loading and small footprint, therefore, this technique has attracted more and more attention in the field of wastewater treatment in recent years. However, the development and widespread application of membrane filtration related technologies, including MBMBR, is still limited by biofouling on filtration membranes. Quorum Quenching (QQ) is a recently developed apporach to control membrane biofouling. Through degrading singalling molecules in quorum sensing (QS) systems, microbial production of extracellular polymeric substance (EPS) and soluble microbial products (SMP) can be suppressed which in turn delay the fouling of the filter membrane. Currently, many QQ methods have been invented, including the use of QQ enzyme, the addition of QQ bacteria or QS inhibitors. Among these methods, the addition of QQ bacteria that can degrade the QS autoinducing molecule, acyl homoserine lactone (AHL), is the most widely applied method. Although MBMBR has been reported to have the ability to delay membrane fouling compared to MBR, there are also literatures that point out the opposite results. In addition, both MBMBR and quorum sensing suppression methods have been proposed to have the potential to control membrane fouling, there is currently no literature discussing the effectiveness of combined MBMBR and QQ method regarding to membrane biofouling control.
  Therefore, the purpose of this experiment is to combine MBMBR and quorum quenching techniques (using Rhodococcus sp. BH4 strain) to evaluate the effectiveness of the system in delaying membrane fouling. The experiment is divided into three tasks: (1) comparison of the fouling rate of MBR and MBMBR. Two types of MBMBR were used and they differed in whether a baffle was placed between the filter membrane tank and the wastewater treatment tank, (2) adjust the suitable experiment flux and testing the experimental parameters of QQ bacteria immobilization method to improved stability of QQ beads, (3) compare the rates of the filter membrane clogging between the reactors with QQ beads (QQ-MBMBR) and with vacant beads (VB-MBMBR). In addition to explore the effects of QQ method on transmembrane pressure (TMP) and the concentration and properties of EPS and SMP, wastewater treatment efficiency was monitored as well.
  In the experiments of comparing fouling rate between MBR and MBMBR, this study found that MBMBR slightly delayed the fouling of the filter membrane by about 5 kPa when baffle was installed. Under the condition that the baffle was removed, TMP of MBMBR did not reach 40 kPa after 54 days. This might due to additional physical collision between the carriers and the prematured biofilm on membrane surface. MBMBR operated at high flux (33.5 LMH) condition, QQ effect was suppressed and the reactor with QQ beads only delays 1 to 2 days for TMP to reach 40 kPa. In the comparison of fouling rate between QQ-MBMBR and VB-MBMBR, no difference in terms of TMP increment was observed in the first round of experiment. But before the start of the second round of experiment, it was found that a large amount of sludge had accumulated at the bottom of the reaction tank with VB-MBMBR. When  the sludge was mixed manually, QQ-MBMBR showed the ability to delay biofouling by 3 days compared with VB-MBMBR. However, in subsequent experiments, the delay of biofouling was no longer observed probably due to poor sludge mixing in reactors. Results also showed that there is no significant difference (P-value of EPSprotein:0.55,P-value of EPScarbohydrate:0.40,P-value of SMP protein:0.87,P-value of SMP carbohydrate:0.29) in concentrations of EPS and SMP between QQ-MBMBR and VB-MBMBR measured during the course of experiment. It is recommended that in subsequent experiments, the better sludge and carrier circulation condition in reactors will be necessary to reveal the clear effects of QQ-MBMBR on biofouling control. Finally, during the experiment, QQ-MBMBR and VB-MBMBR had a similar removal rate against COD and ammonia nitrogen (> 90%), and a total nitrogen (~ 30%) demonstrated that there was no adverse impact of application of QQ on treatment efficiency in the studied systems.
第三語言摘要
論文目次
目錄
第一章	研究緣起	1
1.1	研究緣起	1
1.2	研究假設與目的	3
第二章	文獻回顧	4
2.1	MBR膜生物反應器系統	4
2.1.1	MBR的原理以及特點	4
2.1.2	膜堵塞	5
2.2	MBMBR移動床膜生物反應器	5
2.2.1	MBMBR的原理以及特點	5
2.2.2	MBMBR的缺點及問題探討	6
2.3	群體感應	6
2.3.1	訊息分子	6
2.3.2	AHL	7
2.3.3	胞外聚合物	7
2.3.4	可溶性微生物產品	8
2.4	膜堵塞控制法	8
2.4.1	控制方法總類	8
2.4.2	群體感應抑制法	8
第三章	實驗方法	10
3.1	膜生物反應器	10
3.1.1	膜生物反應器配置圖	10
3.1.2	操作參數	12
3.1.3	反應器之人工廢水	13
3.2	MLSS分析方法	13
3.3	水樣分析方法	14
3.3.1	COD分析方法	14
3.3.2	氨氮分析方法	15
3.3.3	亞硝酸鹽氮	15
3.3.4	硝酸鹽氮	15
3.4	EPS及SMP分析	16
3.4.1	EPS和SMP的蛋白	16
3.4.2	EPS和SMP的多糖	16
3.5	溶氧檢測	16
3.6	微生物固定化法	17
3.7	AHL降解測試	17
3.8	粒徑分析	18
3.9	濾膜阻抗分析	18
3.10	三維螢光光譜分析	18
第四章	實驗方法	19
4.1	MBR以及MBMBR的比較	19
4.1.1	透膜壓力(transmembrane pressure,TMP)	19
4.1.2	EPS比較	22
4.1.3	反應槽處理效能-化學需氧量、氨氮、亞硝酸鹽氮、硝酸鹽氮及總氮的變化	26
4.1.4	混合液懸浮固體(MLSS)的比較	34
4.2	群體感應抑制技術應用於MBMBR的預實驗	36
4.2.1	MBMBR通量控制	37
4.2.2	QQ球的改良	50
4.2.3	MBMBR及QQ-MBMBR的比較	56
第五章	結論與建議	77
5.1	結論	77
5.2	建議	78

 
圖片目錄
圖 3.1 反應槽的配置圖	10
圖 4-1 MBR以及MBMBR在未開隔板的膜壓比較	21
圖 4-2 MBR以及MBMBR在移開隔板的膜壓比較	22
圖 4-3 MBR以及MBMBR在放置隔板的EPS比較	24
圖 4-4 MBR以及MBMBR在移開隔板的EPS比較	25
圖 4-5 有放隔板的COD變化量	27
圖 4-6 無放隔板的COD變化	28
圖 4-7 有放隔板的NH4+-N變化量	29
圖 4-8 無放隔板的NH4+-N變化量	29
圖 4-9 有放隔板的亞硝酸鹽氮變化量	31
圖 4-10 無放隔板的亞硝酸鹽氮變化	31
圖 4-11 有放隔板的硝酸鹽氮變化量	32
圖 4-12 無放隔板的硝酸鹽氮變化量	32
圖 4-13 有放隔板的總氮變化量	34
圖 4-14 無放隔板的總氮變化量	34
圖 4-15 有放隔板的MLSS變化量	36
圖 4-16 無放隔板的MLSS變化量	36
圖 4-17 通量控制-提高通量的透膜壓力	39
圖 4-18 通量控制-加入QQ球的透膜壓力	39
圖 4-19 以PVA-alginate包埋A9及A12的QQ球	41
圖 4-20 A9&A12對C8-HSL的降解測試	42
圖 4-21 EPS及SMP的濃度	43
圖 4-22 MBMBR的MLSS濃度變化	44
圖 4-23 MBMBR的溶氧濃度變化	45
圖 4-24 MBMBR的COD濃度變化	46
圖 4-25 MBMBR的氨氮濃度變化	47
圖 4-26 MBMBR的亞硝酸鹽氮濃度變化	47
圖 4-27 MBMBR的硝酸鹽氮濃度變化	48
圖 4-28 MBMBR的總氮濃度變化	49
圖 4-29 不同溫度下製作藻酸鈉的球	51
圖 4-30 以不同離心速度測試藻酸鈣球強度結果	52
圖 4-31 添加於反應槽前的BH4 alginate球顆粒,球直徑約4.0 mm	53
圖 4-32 4.0 mm alginate球在反應槽中運作後	54
圖 4-33 製作2.5 mm alginate QQ球的TERUMO注射針頭(J1235)	55
圖 4-34 alginate包埋BH4的QQ球(投入反應槽前)	55
圖 4-35 alginate包埋BH4的QQ球(投入反應槽後)	56
圖 4-36 QQ/VB-MBMBR的膜通量比較	58
圖 4-37 BH4及空珠對C8-HSL的降解測試(投入反應槽前)	59
圖 4-38 BH4及空珠對C8-HSL的降解測試(投入反應槽後)	60
圖 4-39 QQ/VB-MBMBR的EPS及SMP比較	61
圖 4-40 EPS在QQ槽/空珠槽中的螢光光譜	64
圖 4-41 SMP在QQ槽/空珠槽中的螢光光譜	65
圖 4-42 QQ/VB-MBMBR的MLSS比較	67
圖 4-43 QQ/VB-MBMBR的濾膜阻抗比較	69
圖 4-44 QQ/VB-MBMBR的粒徑比較	70
圖 4-45 QQ/VB-MBMBR的COD比較	72
圖 4-46 QQ/VB-MBMBR的氨氮比較	74
圖 4-47 QQ/VB-MBMBR的亞硝酸鹽氮比較	75
圖 4-48 QQ/VB-MBMBR的硝酸鹽氮比較	75
圖 4-49 QQ/VB-MBMBR的總氮比較	76
 
表格目錄
表 3-1 反應槽參數表	12
表 3-2 人工廢水成分	13
表 4-1 測試alginate球的參數	53
表 4-2 激發-發射光譜波長分區	63
參考文獻
Ahmed, S., Chung, S., Sohail, N., Qazi, I. and Justin, A. (2020) Application of cell entrapping beads for Quorum Quenching technique in submerged membrane bioreactor. Water Science and Technology 81(4), 744-752.
Ahmed, Z., Cho, J., Lim, B.-R., Song, K.-G. and Ahn, K.-H. (2007) Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. Journal of membrane science 287(2), 211-218.
Chang, I.-S., Le Clech, P., Jefferson, B. and Judd, S. (2002) Membrane fouling in membrane bioreactors for wastewater treatment. Journal of environmental engineering 128(11), 1018-1029.
Chen, F., Bi, X. and Ng, H.Y. (2016) Effects of bio-carriers on membrane fouling mitigation in moving bed membrane bioreactor. Journal of membrane science 499, 134-142.
Chen, W., Westerhoff, P., Leenheer, J.A. and Booksh, K. (2003) Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology 37(24), 5701-5710.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.t. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical chemistry 28(3), 350-356.
Elias, S. and Banin, E. (2012) Multi-species biofilms: living with friendly neighbors. FEMS microbiology reviews 36(5), 990-1004.
Feng, Z., Sun, Y., Li, T., Meng, F. and Wu, G. (2019) Operational pattern affects nitritation, microbial community and quorum sensing in nitrifying wastewater treatment systems. Science of The Total Environment 677, 456-465.
Fu, C., Yue, X., Shi, X., Ng, K.K. and Ng, H.Y. (2017) Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: effects of solids retention time. Chemical engineering journal 309, 397-408.
Han, S.-S., Bae, T.-H., Jang, G.-G. and Tak, T.-M. (2005) Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry 40(7), 2393-2400.
Hu, H., He, J., Liu, J., Yu, H., Tang, J. and Zhang, J. (2016) Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. Rsc Advances 6(14), 11128-11139.
Iqbal, T., Weerasekara, N.A., Lee, K. and Choo, K.-H. (2020) Impact of Encapsulated Quorum-Quenching Bacterial Dose and Feed Type on Biofouling Control in Membrane Bioreactors. Journal of environmental engineering 146(2), 04019109.
Jiang, W., Xia, S., Liang, J., Zhang, Z. and Hermanowicz, S.W. (2013) Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water research 47(1), 187-196.
Khan, S.J., Ilyas, S., Javid, S., Visvanathan, C. and Jegatheesan, V. (2011) Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource technology 102(9), 5331-5336.
Kim, S.-R., Oh, H.-S., Jo, S.-J., Yeon, K.-M., Lee, C.-H., Lim, D.-J., Lee, C.-H. and Lee, J.-K. (2013) Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects. Environmental science & technology 47(2), 836-842.
Kurita, T., Mogi, T. and Kimura, K. (2016) Influence of different biofilm carriers on the operation and membrane fouling of submerged membrane bioreactors. Separation and Purification Technology 169, 43-49.
Lee, S., Park, S.-K., Kwon, H., Lee, S.H., Lee, K., Nahm, C.H., Jo, S.J., Oh, H.-S., Park, P.-K. and Choo, K.-H. (2016) Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environmental science & technology 50(4), 1788-1795.
Lee, S.H., Lee, H., Nahm, C.H., Lim, J., Min, S., Chae, D., Lee, K., Choo, K.-H., Lee, C.-H. and Park, P.-K. (2020) Effect of Permeate Flux and Backwashing on Quorum Sensing and Quenching within Biocake Layer in Membrane Bioreactor. Journal of environmental engineering 146(5), 04020025.
Lesjean, B., Rosenberger, S., Schrotter, J.-C. and Recherche, A. (2004) Membrane-aided biological wastewater treatment—an overview of applied systems. Membrane Technology 2004(8), 5-10.
Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., Chen, J. and Gao, W. (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of membrane science 460, 110-125.
Liu, Y., Liu, Z., Zhang, A., Chen, Y. and Wang, X. (2012) The role of EPS concentration on membrane fouling control: Comparison analysis of hybrid membrane bioreactor and conventional membrane bioreactor. Desalination 305, 38-43.
Maqbool, T., Khan, S.J., Waheed, H., Lee, C.-H., Hashmi, I. and Iqbal, H. (2015) Membrane biofouling retardation and improved sludge characteristics using quorum quenching bacteria in submerged membrane bioreactor. Journal of membrane science 483, 75-83.
Oh, H.-S., Kim, S.-R., Cheong, W.-S., Lee, C.-H. and Lee, J.-K. (2013) Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant. Applied microbiology and biotechnology 97(23), 10223-10231.
Oh, H.-S., Yeon, K.-M., Yang, C.-S., Kim, S.-R., Lee, C.-H., Park, S.Y., Han, J.Y. and Lee, J.-K. (2012) Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environmental science & technology 46(9), 4877-4884.
Pervez, S., Khan, S.J., Waheed, H., Hashmi, I. and Lee, C.-H. (2018) Impact of quorum quenching bacteria on biofouling retardation in submerged membrane bioreactor (SMBR). Membr Water Treat 9(4), 279-284.
Peterson, G.L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical biochemistry 83(2), 346-356.
Rasmussen, T.B. and Givskov, M. (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152(4), 895-904.
Salehiziri, M., Rad, H.A. and Novak, J.T. (2018) Preliminary investigation of quorum quenching effects on sludge quantity and quality of activated sludge process. Chemosphere 209, 525-533.
Siddiqui, M.F., Rzechowicz, M., Harvey, W., Zularisam, A. and Anthony, G.F. (2015) Quorum sensing based membrane biofouling control for water treatment: a review. Journal of Water Process Engineering 7, 112-122.
Song, W., Li, Z., Ding, Y., Liu, F., You, H., Qi, P., Wang, F., Li, Y. and Jin, C. (2018) Performance of a novel hybrid membrane bioreactor for treating saline wastewater from mariculture: Assessment of pollutants removal and membrane filtration performance. Chemical engineering journal 331, 695-703.
Teng, J., Zhang, M., Leung, K.-T., Chen, J., Hong, H., Lin, H. and Liao, B.-Q. (2019) A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor. Water research 149, 477-487.
Visvanathan, C., Aim, R.B. and Parameshwaran, K. (2000) Membrane separation bioreactors for wastewater treatment. Critical reviews in environmental science and technology 30(1), 1-48.
Wang, Z., Ma, J., Tang, C.Y., Kimura, K., Wang, Q. and Han, X. (2014) Membrane cleaning in membrane bioreactors: a review. Journal of membrane science 468, 276-307.
Williams, P., Winzer, K., Chan, W.C. and Camara, M. (2007) Look who's talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1483), 1119-1134.
Xiong, Y. and Liu, Y. (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Applied microbiology and biotechnology 86(3), 825-837.
Yang, S. and Yang, F. (2011) Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. Journal of Hazardous Materials 195, 318-323.
Yang, S., Yang, F., Fu, Z. and Lei, R. (2009a) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling. Bioresource technology 100(24), 6655-6657.
Yang, S., Yang, F., Fu, Z. and Lei, R. (2009b) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource technology 100(8), 2369-2374.
Zhang, B., Sun, B., Ji, M., Liu, H. and Liu, X. (2010) Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater. Bioresource technology 101(9), 3054-3059.
Zhang, X., Sun, Y., Ma, F., Li, A., Zhao, H.-p., Wang, A. and Yang, J. (2019) In-situ utilization of soluble microbial product (SMP) cooperated with enhancing SMP-dependent denitrification in aerobic-anoxic sequencing batch reactor. Science of The Total Environment 693, 133558.
Zhu, X., Wang, Z. and Wu, Z. (2011) Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry 46(4), 1001-1009.
朱巧芸 (2019) Acyl Homoserine Lactones (AHLs) 抑制菌篩選及其在薄膜生物反應器控制生物阻塞之效能評估.
論文全文使用權限
校內
校內紙本論文延後至2026-02-26公開
同意電子論文全文授權校園內公開
校內電子論文延後至2026-02-26公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2026-02-26公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信