淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2602202010301000
中文論文名稱 以咔唑/苯並咪唑為主所設計出的雙極分子作為高效率的磷光和熱活化延遲螢光發光體主體材料
英文論文名稱 Carbazole/Benzimidazole-based Bipolar Molecules as the Hosts for Phosphorescent and Thermally Activated Delayed Fluorescence Emitters for Efficient OLEDs
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 108
學期 1
出版年 109
研究生中文姓名 高振傑
研究生英文姓名 Zhen-Jie Gao
學號 607160099
學位類別 碩士
語文別 中文
口試日期 2020-01-08
論文頁數 101頁
口試委員 指導教授-陳志欣
委員-劉舜維
委員-王伯昌
中文關鍵字 有機發光二極體  主體材料  熱活化延遲螢光 
英文關鍵字 Organic light-emitting diode  host materials  thermally activated delayed fluorescence 
學科別分類 學科別自然科學化學
中文摘要 以carbazole為供體,benzimidazole為受體,合成了一系列不同π電子共軛的雙極分子。主體材料的最大吸收波長從305至342 nm,放光光譜的波峰範圍從347至443 nm。由理論計算得到主體分子的carbazole和benzene之間的兩面角最小為35.4°,最大為89.6°。我們成功的利用增加立體障礙的方式獲得大的扭轉角來減少分子內的共振機率,藉此提高主體分子的LUMO能階。在獲得高的LUMO能階的情況下這些材料有高的潛力作為OLED元件中的主體。在元件的測試結果中,以p-CbzBiz用作於綠色磷光發射體Ir(ppy)2(acac)的主體時,OLED元件的最大外部量子效率達到21.8%。此外,當o-CbzBiz用於綠色螢光發光體4CzIPN的主體時,OLED元件的最大外部量子效率可以達到16.7%。因此,基於carbazole/benzimidazole為主所設計的分子有潛力做為磷光或TADF OLED發光體的主體材料。
英文摘要 A series of bipolar molecules, which are different kinds of π-bridge were synthesized using carbazole as the donor and the benzimidazole as the acceptor. These host meterials exhibited a maximum UV absorption band ranging from the 305 to 342 nm, and a maximum emission band ranging from 347 to 443 nm. Density functional theory calculations showed that the twist angle between the donor and acceptor moiety is of these molecules were from 35.4° to 89.6°. Such twisted structure hampered the π-electron conjugation within the molecule and resulted in high-lying LUMO levels, which make them potential hosts for the emitters in OLED devices. Our results showed that a maximum external quantum efficiency (EQE) of OLED reached 21.8% when p-CbzBiz was applied as the host of a green phosphorescent emitter Ir(ppy)2(acac). In addition, a maximum EQE of OLED reached 16.7% when o-CbzBiz with the host of a green TADF emitter 4CzIPN was achieved. Therefore, the carbazole/benzimidazole-based molecules are potential to be universal hosts in OLEDs applications.
論文目次 目錄
圖目錄 viii
第一章 、緒論 1
1-1 前言 2
1-2 發光材料之放光機制 2
1-2-1 螢光 2
1-2-2 磷光 5
1-2-3 熱活化延遲螢光 6
1-3 多層OLED結構 6
1-3-1 能階示意圖 6
1-3-2 陽極材料 7
1-3-3 電洞注入材料 7
1-3-4 電洞傳輸材料 8
1-3-5電子傳輸材料 9
1-3-6 陰極材料 9
1-4 主客體發光系統 10
1-4-2 摻雜螢光材料之元件的能量轉移 11
1-4-3摻雜磷光材料之元件的能量轉移 12
1-4 有機發光二極體元件相關係數 13
1-4-1的元件發光效率 13
第二章 、結果與討論 16
2-1 研究背景 17
2-2分子結構設計 19
2-4 光化學性質 24
2-5 熱穩定性性質 31
2-6電化學性質 33
2-7理論計算 36
2-8主體分子的電子電洞傳輸速率 38
2-9 磷光發光體元件效率 39
2-10 熱活化延遲螢光發光體元件效率 42
2-11結論 44
實驗儀器 45
實驗藥品 47
實驗合成步驟和相關光譜數據 50
9-(2-bromophenyl)-9H-carbazole (a) 50
9-(3-bromophenyl)-9H-carbazole (b) 51
9-(thiophen-2-yl)-9H-carbazole (e) 52
9-(thiophen-3-yl)-9H-carbazole (f) 53
9-(4-bromo-2,5-dimethylphenyl)-9H-carbazole (g) 54
4-bromo-2,5-dimethylbenzaldehyde (h) 55
2-(4-bromo-2,5-dimethylphenyl)-1-phenyl-1H-benzo[d]imidazole(i) 56
9-(4-bromo-3-methylphenyl)-9H-carbazole (j) 57
2-(4-bromo-3-methylphenyl)-1-phenyl-1H-benzo[d]imidazole (k) 58
9-(4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-2-yl)-9H-carbazole (o-CbzBiz) 59
9-(4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-3-yl)-9H-carbazole (m-CbzBiz) 61
9-(4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-4-yl)-9H-carbazole (p-CbzBiz) 63
9-(5-(4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)thiophen-2-yl)-9H-carbazole (2-CbzTBiz) 65
9-(5-(4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)thiophen-3-yl)-9H-carbazole (3-CbzTBiz) 67
9-(2,2',5,5'-tetramethyl-4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-4-yl)-9H-carbazole(tm-p-CbzBiz) 69
9-(2,2'-dimethyl-4'-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-4-yl)-9H-carbazole(dm-p-CbzBiz) 71
附圖 76


圖目錄
圖1-1、Jablonski diagram。 3
圖1-2、多層式有機發光二極體元件結構示意圖 7
圖1-3、(a) C. W. Tang 等人所提出之低壓雙層OLED 元件; (b) 主-客摻雜系統之電致發光光譜(1) 未摻雜Alq3, (2) C540/Alq3, and (3) DCM1/Alq3. 10
圖1-4、螢光摻雜(fluorescent dopant)元件的能量傳遞圖 12
圖1-5、磷光摻雜(phosphorescent dopant)元件的能量傳遞圖 13
圖2-1、主體分子在二氯甲烷中的UV吸收光譜。 25
圖2-2、主體分子在二氯甲烷中的螢光放光光譜和磷光放光光譜。 26
圖2-3、o-CbzBiz、m-CbzBiz和p-CbzBiz在薄膜狀態的螢光和磷光放光光譜。 28
圖2-4、o-CbzBiz、m-CbzBiz和p-CbzBiz在甲苯中的吸收和放光光譜。 29
圖2-5、o-CbzBiz、m-CbzBiz和p-CbzBiz在二氯甲烷、四氫呋喃和甲苯中的螢光放光光譜。 30
圖2-6、o-CbzBiz、m-CbzBiz、p-CbzBiz、tm-p-CbzBiz和dm-p-CbzBiz的熱重分析圖。 31
圖2-7、o-CbzBiz、m-CbzBiz和p-CbzBiz的玻璃轉移溫度圖。 32
圖2-8、主體分子的循環伏安圖。 34
圖2-9、主體分子的HOMO-LUMO電子分布和環與環之間的二面角角度。 37
圖2-10、(a) Current density-voltage curves of hole and electron only devices; (b) Hole mobilities versus E1/2 for p-CbzBiz. 38
圖2-11、PhOLED的元件能階圖。 40
圖2-12、(a) 電致發光光譜;(b) 電流和功率效率的關係;(c) PhOLED的外部量子效率(EQE)與亮度的關係;(d) 電流密度-電壓-亮度(J-V-L)圖。 40
圖2-13、TADF OLED的元件能階圖。 42
圖2-14、(a)電致發光光譜;(b)電流和功率效率的關係;(c)TADF OLED的外部量子效率(EQE)與亮度的關係;(d)電流密度-電壓-亮度(J-V-L)圖。 43


表目錄
表2-1、主體分子的光物理性質 27
表2-2、主體分子在薄膜的光物理性質 28
表2-3、主體分子在甲苯中的光物理性質 29
表2-4、o-CbzBiz、m-CbzBiz、p-CbzBiz、tm-p-CbzBiz和dm-p-CbzBiz的熔點、玻璃轉化溫度和熱裂解溫度。 32
表2-5、主體分子的電化學性質。 34
表2-6、主體分子的電化學性質。 35
表2-7、主體分子的PhOLED的元件性能。 41
表2-8、主體分子的TADF OLED的元件性能。 43
參考文獻 [1] W. Quirino, K. Teixeira, C. Legnani, V. Calil, B. Messer, O.V. Neto, M. Pacheco, M. Cremona, Improved multilayer OLED architecture using evolutionary genetic algorithm, Thin Solid Films 518 (2009) 1382-1385.
[2] J. Huang, J.-H. Su, X. Li, M.-K. Lam, K.-M. Fung, H.-H. Fan, K.-W. Cheah, C.H. Chen, H. Tian, Bipolar anthracene derivatives containing hole-and electron-transporting moieties for highly efficient blue electroluminescence devices, J. Mater. Chem. 21 (2011) 2957-2964.
[3] T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, S.D. Theiss, Recent progress in organic electronics: Materials, devices, and processes, Chem. Mater. 16 (2004) 4413-4422.
[4] H. Sasabe, J. Kido, Development of high performance OLEDs for general lighting, J. Mater. Chem. C 1 (2013) 1699-1707.
[5] M. Pope, H. Kallmann, P. Magnante, Electroluminescence in organic crystals, J. Chem. Phys 38 (1963) 2042-2043.
[6] M. Eritt, C. May, K. Leo, M. Toerker, C. Radehaus, OLED manufacturing for large area lighting applications, Thin Solid Films, 518 (2010) 3042-3045.
[7] C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913-915.
[8] M.A. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 395 (1998) 151.
[9] J.-H. Park, E.-K. Kim, I.M. El-Deeb, S.-J. Jung, D.-H. Choi, D.-H. Kim, K.-H. Yoo, J.-H. Kwon, S.-H. Lee, New bipolar green host materials containing benzimidazole-carbazole moiety in phosphorescent OLEDs, Bull Korean Chem Soc 32 (2011) 841-846.
[10] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492 (2012) 234-238.
[11] X. Yang, G. Zhou, W.-Y. Wong, Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices, Chem. Soc. Rev. 44 (2015) 8484-8575.
[12] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M.P. Aldred, Recent advances in organic thermally activated delayed fluorescence materials, Chem. Soc. Rev. 46 (2017) 915-1016.
[13] C.W. Tang, S.A. VanSlyke, C. Chen, Electroluminescence of doped organic thin films, J. Appl. Phys. 65 (1989) 3610-3616.
[14] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, S. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 75 (1999) 4-6.
[15] R. Bauer, W.J. Finkenzeller, U. Bogner, M.E. Thompson, H. Yersin, Matrix influence on the OLED emitter Ir(btp)2(acac) in polymeric host materials-Studies by persistent spectral hole burning, Org. Electron. 9 (2008) 641-648.
[16] Y.J. Cho, K.S. Yook, J.Y. Lee, A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs, Adv. Mater. 26 (2014) 4050-4055.
[17] L.S. Cui, Y.M. Xie, Y.K. Wang, C. Zhong, Y.L. Deng, X.Y. Liu, Z.Q. Jiang, L.S. Liao, Pure hydrocarbon hosts for≈ 100% exciton harvesting in both phosphorescent and fluorescent light‐emitting devices, Adv. Mater. 27 (2015) 4213-4217.
[18] K.-S. Kim, Y.-M. Jeon, J.-W. Kim, C.-W. Lee, M.-S. Gong, Blue light-emitting OLED using new spiro [fluorene-7, 9'-benzofluorene] host and dopant materials, Org. Electron. 9 (2008) 797-804.
[19] C. Wu, B. Wang, Y. Wang, J. Hu, J. Jiang, D. Ma, Q. Wang, A universal host material with a simple structure for monochrome and white phosphorescent/TADF OLEDs, J. Mater. Chem. C 7 (2019) 558-566.
[20] T. Chatterjee, K.T. Wong, Perspective on host materials for thermally activated delayed fluorescence organic light emitting diodes, Adv. Opt. Mater 7 (2019) 1800565.
[21] R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, M. Thompson, Blue organic electrophosphorescence using exothermic host-guest energy transfer, Appl. Phys. Lett. 82 (2003) 2422-2424.
[22] S. Jhulki, J.N. Moorthy, Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification, J. Mater. Chem. C 6 (2018) 8280-8325.
[23] W. Song, Y. Chen, Q. Xu, H. Mu, J. Cao, J. Huang, J. Su, [1, 2, 4] Triazolo [1, 5-a] pyridine-based host materials for green phosphorescent and delayed-fluorescence OLEDs with low efficiency roll-off, ACS Appl. Mater. Interfaces 10 (2018) 24689-24698.
[24] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices, Appl. Phys. Lett. 83 (2003) 569-571.
[25] Y. Chen, X. Wei, J. Cao, J. Huang, L. Gao, J. Zhang, J. Su, H. Tian, Novel bipolar indole-based solution-processed host material for efficient green and red phosphorescent OLEDs, ACS Appl. Mater. Interfaces 9 (2017) 14112-14119.
[26] C.W. Lee, J.Y. Lee, Highly electron deficient pyrido [3', 2': 4, 5] furo [2, 3-b] pyridine as a core structure of a triplet host material for high efficiency green phosphorescent organic light-emitting diodes, Chem. Commun. 49 (2013) 6185-6187.
[27] B. Liu, J. Zhao, C. Luo, F. Lu, S. Tao, Q. Tong, A novel bipolar phenanthroimidazole derivative host material for highly efficient green and orange-red phosphorescent OLEDs with low efficiency roll-off at high brightness, J. Mater. Chem. C 4 (2016) 2003-2010.
[28] Y. Wang, W. Song, Y. Chen, Y. Jiang, H. Mu, J. Huang, J. Su, A series of new bipolar CBP derivatives with introduction of a electron-deficient moiety for efficient green organic light-emitting diodes, Org. Electron. 61 (2018) 142-150.
[29] W. Song, L. Gao, T. Zhang, J. Huang, J. Su, [1, 2, 4] Triazolo [1, 5-a] pyridine based host materials for high-performance red PhOLEDs with external quantum efficiencies over 23%, J. Lumin. 206 (2019) 386-392.
[30] S.-y. Chang, G.-T. Lin, Y.-C. Cheng, J.-J. Huang, C.-L. Chang, C.-F. Lin, J.-H. Lee, T.-L. Chiu, M.-k. Leung, Construction of highly efficient carbazol-9-yl-substituted benzimidazole bipolar hosts for blue phosphorescent light-emitting diodes: Isomer and device performance relationships, ACS Appl. Mater. Interfaces 10 (2018) 42723-42732.
[31] Y. Zhao, C. Wu, P. Qiu, X. Li, Q. Wang, J. Chen, D. Ma, New benzimidazole-based bipolar hosts: highly efficient phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes employing the same device structure, ACS Appl. Mater. Interfaces 8 (2016) 2635-2643.
[32] K.H. Kim, J.J. Kim, Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs, Adv. Mater. 30 (2018) 1705600.
[33] Y.H. Huang, W.L. Tsai, W.K. Lee, M. Jiao, C.Y. Lu, C.Y. Lin, C.Y. Chen, C.C. Wu, Unlocking the full potential of conducting polymers for high‐efficiency organic light‐emitting devices, Adv. Mater. 27 (2015) 929-934.
[34] T.-T. Bui, F. Goubard, M. Ibrahim-Ouali, D. Gigmes, F. Dumur, Thermally activated delayed fluorescence emitters for deep blue organic light emitting diodes: A review of recent advances, Appl. Sci. 8 (2018) 282-308.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-02-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-02-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信