§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2602201810342800
DOI 10.6846/TKU.2018.00810
論文名稱(中文) 奈米二氧化鈦(TiO2)/聚醚碸(PES)超過濾薄膜之製備及抗汙效果研究
論文名稱(英文) Nano-titania (TiO2)/polyethersulfone (PES) ultrafiltration membrane preparation and antifouling capability analyses
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 林建德
研究生(英文) Jian-De Lin
學號 604400035
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-19
論文頁數 119頁
口試委員 指導教授 - 鄭廖平(lpcheng@mail.tku.edu.tw)
委員 - 張旭賢
委員 - 張朝欽
關鍵字(中) 溶膠凝膠法
聚醚碸
二氧化鈦
超過濾
抗汙
截留分子量
關鍵字(英) sol-gel method
polyethersulfone
TiO2
ultrafiltration
antifouling capability
molecular weight cut-off
第三語言關鍵字
學科別分類
中文摘要
本研究在製膜液中導入自行合成之奈米二氧化鈦(titania, TiO2)溶膠及聚乙烯吡咯烷酮(PVP)兩種添加劑,藉由前者之親水性改善PES薄膜易結垢之缺失,及後者之造孔功能,使孔隙交穿連通,製備出PES/TiO2複合薄膜(俗稱mixed matrix membrane, MMM),依PVP添加量不同,將薄膜分為P0、P1.5以及P5三系列,每系列薄膜中各含不同濃度TiO2。TiO2是採用溶膠-凝膠法合成,其粒徑大小約為2-3 nm,並且為了讓TiO2能充分分散在製膜液中,不論調配製膜液或合成TiO2皆以二甲基乙醯胺(DMAc)作為溶劑;所製得薄膜皆呈現非對稱結構,表面為皮層,內部則由手指狀巨孔及不規則大型巨孔所構成,隨著PVP添加量增加,上下表面孔洞逐漸變大,使得純水通量隨之增加,而不規則大型孔洞逐漸轉化為手指狀巨孔;改變TiO2添加量時,會使得薄膜表孔洞尺吋呈先增後降趨勢,使得純水通量亦呈相同趨勢,薄膜之孔隙度約為80~88%,上表面接觸角則會隨著TiO2的添加而逐漸下降,抗張強度隨著PVP添加量提高,逐漸下降,這是由於上下表面孔洞變大所造成,然而當固定PVP添加量時,抗張強度則會隨著TiO2的添加,呈先增後降趨勢。PVP在薄膜的殘留量是由NMR分析取得,結果顯示約90% PVP於成膜過程中已被移除,殘留量僅佔膜重1~2%。熱性質方面,由TGA與DSC分析可知隨著TiO2的添加,薄膜熱穩定性隨之提升,最大裂解溫度可提升約5C,玻璃轉換溫度約提升10C。將薄膜進行BSA過濾時,發現P0及P1.5系列之移除率皆可達99%,而P5只有約93%,至於純水通量及回復率則隨著TiO2的添加呈現先增後降趨勢,原因是TiO2可提高表面親水性,進而減少BSA和薄膜表面的疏水性吸附,但過量添加會導致TiO2團聚而降低其效能。利用PEG測試薄膜之截留分子量,發現P0系列約為270~350 kDa、P1.5系列約為325~510 kDa、P5系列約為450~850 kDa,此現象與純水通量以及孔洞大小數據互相呼應。
英文摘要
In this research, we introduce TiO2 sol (synthesized via the sol-gel procedure) and polyvinylpyrrolidone (PVP) into the casting dope for polyethersulfone (PES)/TiO2 composite membrane formation. The former additive is used to enhance the hydrophilicity, whereas the latter functions as a pore former to engender pore-pore interconnection. Prepared membranes (termed mixed matrix membrane, MMM) can be divided into 3 series: P0, P1.5 and P5, according to the amount of added PVP. Each series consists of several membranes with TiO2 contents. To disperse TiO2 finely (on the scale of 2-3 nm) in the casting dope, the sol-gel process incorporates DMAc as the solvent, same as that used for preparation of the casting dopes. All membranes show the asymmetric structure with a dense surface (skin) and a porous cross section composed of finger-liked macrovoids and large irregular macrovoids. With the increase of added PVP, the pores on the top and bottom surfaces increase, resulting in an increase of the pure water flux, while the irregular large macrovoids gradually transform into finger-liked macrovoids. Changing the amount of added TiO2, the surface pore size of the membrane is found to increase first and then decrease; the pure water flux follows the same trend. The porosity of the membrane is about 80-88%, and the contact angle of the top surface gradually decreases with the addition of TiO2. The tensile strength decreases with the increase of added amount of PVP, which is attributed to the larger pores of the top and bottom surfaces. However, when the added PVP is fixed, the tensile strength increases first and then decreases with the addition of TiO2. The amount of PVP resided in the membrane has been determined by NMR analysis. The results show that about 90% of the PVP is removed during the membrane formation process and the residual amount only accounts for 1-2% of the membrane weight. Thermal properties based on TGA and DSC analysis show that the thermal stability of the membrane increases with the TiO2 content: an increase of 5C on the maximum thermal degradation temperature and 10C of the glass transition temperature. The BSA filtration experiments show that the rejection ratio of the P0 and P1.5 series are both 99% and yet it is only about 93% for the P5 series. As to the pure water flux and the recovery ratio, both increase first and then decrease with the TiO2 content. The reason is that TiO2 can increase the hydrophilicity of the membrane surface and thus reduces the hydrophobic adsorption of BSA on the surface. However, excessive amount of TiO2 can cause agglomeration of TiO2, which in turn lead to decrease of its antifouling efficiency. PEG is used to determine the molecular weight cut-off (MWCO) of the membranes. For the P0 series, the MWCO is about 270-350 kDa, for the P1.5 series, it is about 325-510 kDa, and for the P5 series, it is about 450-850 kDa. These results are consistent with the pure water flux and the pore size data.
第三語言摘要
論文目次
目錄
致謝	I
論文提要內容	Ⅱ
Abstract	 IV
目錄	VI
圖目錄	VIII
表目錄	XI
一	序論	1
1.1	前言	1
1.2	奈米TiO2溶膠的合成	3
1.3	PES/TiO2有機無機複合薄膜	5
1.4	PES/無機粒子複合薄膜文獻回顧	7
1.5	UF與薄膜結垢	8
二	實驗	10
2.1	實驗藥品	10
2.2	實驗步驟	12
2.2.1	奈米二氧化鈦粒子之合成	12
2.2.2	浸漬沉澱法製備PES/TiO2複合薄膜	15
2.2.3	TiO2溶膠及薄膜之物性分析	17
2.2.4	純水通量、超過濾、截留分子量及抗垢測試	21
三	結果與討論	29
3.1	奈米二氧化鈦溶膠的合成與結構鑑定	29
3.1.1	奈米二氧化鈦粒徑分析與鑑定	29
3.1.2	傅氏紅外線吸收光譜(FTIR)之鑑定與分析	31
3.2	PES/TiO2複合薄膜之製備與物性分析	34
3.2.1	SEM structure & EDS	34
3.2.2	PES/TiO2複合薄膜之製備與物性分析	51
3.2.3	成孔劑PVP的殘留	55
3.2.4	薄膜拉伸測試	61
3.2.5	添加TiO2奈米粒子對PES薄膜熱性質的影響	65
3.2.6	純水通量測試	72
3.3	薄膜BSA抗垢能力檢測	77
3.4	薄膜截留分子量測試	89
四	結論	93
五	參考文獻	95
附錄A  SEM	104
附錄B  PMI測試	110

圖目錄
圖1-1	恆溫浸漬沉澱法與三成份相圖關係	6
圖1-2	成膜路徑及溶劑-非溶劑擴散路徑圖	7
圖2-1	合成奈米二氧化鈦之實驗流程	12
圖2-2	不同重量百分濃度的DMAc-C4H9OH溶液折射率檢量線	14
圖2-3	製備PES/TiO2薄膜之流程	15
圖2-4	以HPLC測試分子量5萬PEG Standard	22
圖2-5	以HPLC測試分子量11萬PEG Standard	23
圖2-6	以HPLC測試分子量27萬PEG Standard	24
圖2-7	以HPLC測試分子量53萬PEG Standard	25
圖2-8	以HPLC測試分子量100萬PEG Standard	26
圖2-9	不同濃度牛血清白蛋白(BSA)之UV吸收度檢量線	28
圖3-1	溶膠中奈米二氧化鈦粒子大小隨反應時間變化圖	30
圖3-2	溶膠中奈米二氧化鈦之粒徑分佈	30
圖3-3	TBOT/DMAc溶液之FTIR圖譜	31
圖3-4	TBOT+DMAc水解縮合及減壓濃縮前後FTIR圖譜	32
圖3-5	未添加PVP之薄膜上表面SEM影像圖	37
圖3-6	未添加PVP之薄膜下表面SEM影像圖	38
圖3-7	未添加PVP之薄膜截面SEM影像圖	39
圖3-8	未添加PVP之薄膜截面EDS元素分析圖	40
圖3-9	添加1.5wt% PVP之薄膜上表面SEM影像圖	42
圖3-10	添加1.5 wt% PVP之薄膜下表面SEM影像圖	43
圖3-11	添加1.5 wt% PVP之薄膜截面SEM影像圖	44
圖3-12	添加1.5 wt%之PVP薄膜截面EDS元素分析圖	45
圖3-13	添加5 wt% PVP之薄膜上表面SEM影像圖	47
圖3-14	添加5 wt% PVP之薄膜下表面SEM影像圖	48
圖3-15	添加5 wt% PVP之薄膜截面SEM影像圖	49
圖3-16	添加5 wt%之PVP薄膜截面EDS元素分析圖	50
圖3-17	聚醚碸PES (a)與聚乙烯吡咯烷酮PVP (b)之H-NMR光譜圖	56
圖3-18	P1.5系列薄膜之H-NMR光譜圖(a) P1.5T0, (b) P1.5T4, (c) P1.5T8.			58
圖3-19	P5系列薄膜之H-NMR光譜圖 (a) P5T0, (b) P5T4, (c) P5T8	60
圖3-20	不同比例PVP之薄膜厚度對TiO2含量作圖	63
圖3-21	不同比例PVP之薄膜拉伸強度對TiO2含量作圖	64
圖3-22	不同比例PVP之薄膜斷裂伸長率對TiO2含量作圖	64
圖3-23	P0系列薄膜之熱重分析圖	66
圖3-24	PVP K-30之熱重分析圖	67
圖3-25	P1.5系列薄膜之熱重分析圖	68
圖3-26	P5系列薄膜之熱重分析圖	69
圖3-27	P5系列薄膜之DSC熱分析掃描圖,DSC一次升溫圖,升溫速率為10C/min	71
圖3-28	P0系列薄膜之薄膜純水通量	73
圖3-29	P1.5系列薄膜之薄膜純水通量	74
圖3 30	P5系列薄膜之薄膜純水通量	75
圖3-31	BSA過濾示意圖 (a) 適量TiO2 , (b) 過量TiO2	80
圖3-32	未添加PVP之薄膜BSA過濾通量隨時間變化圖	87
圖3-33	添加1.5 wt% PVP之薄膜BSA過濾通量隨時間變化圖	88
圖3-34	添加5 wt% PVP之薄膜BSA過濾通量隨時間變化圖	88
圖3-35	各系列薄膜之截留分子量與水通量對PEG分子量作圖	92
圖A-1	P0系列之薄膜截面SEM放大影像圖	104
圖A-2	P1.5系列之薄膜截面SEM放大影像圖	105
圖A-3	P5系列之薄膜截面SEM放大影像圖	106
圖A-4	未添加PVP之薄膜上表面EDS元素分析圖	107
圖A-5	添加1.5 wt%之PVP薄膜上表面EDS元素分析圖	108
圖A-6	添加5 wt%之PVP薄膜上表面EDS元素分析圖	109
圖B-1	P1.5T0薄膜之氣體流量對壓力作圖	110
圖B-2	P1.5T0薄膜之累積氣體流量對孔徑作圖	110
圖B-3	P1.5T0薄膜之孔徑分佈圖	111
圖B-4	P1.5T0薄膜之孔徑分佈對平均孔徑作圖	111
圖B-5	P1.5T2薄膜之氣體流量對壓力作圖	112
圖B-6	P1.5T2薄膜之累積氣體流量對孔徑作圖	112
圖B-7	P1.5T2薄膜之孔徑分佈圖	113
圖B-8	P1.5T2薄膜之孔徑分佈對平均孔徑作圖	113
圖B-9	P1.5T4薄膜之氣體流量對壓力作圖	114
圖B-10	P1.5T4薄膜之累積氣體流量對孔徑作圖	114
圖B-11	P1.5T4薄膜之孔徑分佈圖	115
圖B-12	P1.5T4薄膜之孔徑分佈對平均孔徑作圖	115
圖B-13	P1.5T6薄膜之氣體流量對壓力作圖	116
圖B-14	P1.5T6薄膜之累積氣體流量對孔徑作圖	116
圖B-15	P1.5T6薄膜之孔徑分佈圖	117
圖B-16	P1.5T6薄膜之孔徑分佈對平均孔徑作圖	117
圖B-17	P1.5T8薄膜之氣體流量對壓力作圖	118
圖B-18	P1.5T8薄膜之累積氣體流量對孔徑作圖	118
圖B-19	P1.5T8薄膜之孔徑分佈圖	119
圖B-20	P1.5T8薄膜之孔徑分佈對平均孔徑作圖	119

表目錄
表2-1	合成奈米二氧化鈦之反應物莫耳組成	12
表2-2	減壓濃縮前後奈米二氧化鈦溶膠之莫耳組成	13
表2-3	製備PES/TiO2複合薄膜之製膜液組成	16
表3-1	TBOT及DMAc其FTIR吸收峰位置	32
表3-2	由Image J分析SEM圖量測pore size (nm)	34
表3-3	P0系列薄膜之厚度、接觸角、孔隙度、孔洞尺寸及製膜液黏度…52
表3-4	P1.5系列薄膜厚度、接觸角、孔隙度、孔洞尺寸及製膜液黏度				53
表3-5	P5系列薄膜厚度、孔隙度、孔洞尺寸及製膜液黏度	54
表3-6	PVP在PES/TiO2複合薄膜中由NMR計算殘留率和萃取率	55
表3-7	P0系列薄膜之抗張強度與伸長率	62
表3-8	P1.5系列薄膜之抗張強度與伸長率	62
表3-9	P5系列薄膜之抗張強度與伸長率	63
表3-10	P0系列薄膜之熱重分析數據	66
表3-11	P1.5系列薄膜之熱重分析數據	69
表3-12	P5系列薄膜之熱重分析及玻璃轉移溫度數據	70
表3-13	P0系列薄膜之純水通量(L/m2h)	73
表3-14	P1.5系列薄膜之薄膜純水通量(L/m2h)	74
表3-15	P5系列薄膜之薄膜純水通量(L/m2h)	75
表3-16	Guerout–Elford–Ferry equation計算薄膜表面平均孔徑dm (m)	76
表3-17	P0系列薄膜BSA過濾之回復率及移除率	81
表3-18	P1.5系列薄膜BSA過濾之回復率及移除率	82
表3-19	P5系列薄膜BSA過濾之回復率及移除率	83
表3-20	P0系列薄膜BSA過濾阻力	84
表3-21	P1.5系列薄膜BSA過濾阻力	85
表3-22	P5系列薄膜BSA過濾阻力	86
表3-23	各系列薄膜截留率線與R = 90% 線交點之PEG截留分子量 (kDa)	90
表3-24	各系列薄膜截留分子量計算表面孔洞大小 (nm)	90
參考文獻
[1]	World Resources Institute. Aqueduct Project, 2013. Accessed on December 2013, available at http://www.wri.org/resources/charts-graphs/water-stress-country.
[2]	M. A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452, 2008, 301–310.
[3]	C. A. Quist-Jensen, F.Macedonio, E. Drioli, Membrane technology for water production in agriculture: Desalination and wastewater reuse, Desalination, 364, 2015, 17-32.
[4]	WHO, World Health Organization — Water, Fact Sheet 391[Online]. available at http://www.who.int/mediacentre/factsheets/fs391/en/2014(Accessed:05-Aug-2014).
[5]	T. Matsuura, Progress in membrane science and technology for seawater desalination: a review. Desalination, 134, 2001, 47–54.
[6]	X. Y. Li, H.P. Chu, Membrane bioreactor for the drinking water treatment of polluted surface water supplies, Water Res, 37, 2003, 4781–4791.
[7]	A. Fenu, G. Guglielmi, J. Jimenez, M. Sperandio, D. Saroj, B. Lesjean, Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities. Water Res., 44. 2010, 4272–4294.
[8]	R. Reis van, A. Zydney, Bioprocess membrane technology. J. Membr. Sci., 297, 2007, 16–50.
[9]	H. Strathmann, L. Giorno, E. Drioli, An Introduction to Membrane Science and Technology, Italy, Consiglio Nazionale Delle Ricerche, 2006.
[10]	R. S. Tutunjian, Ultrafiltration processes in biotechnology, Ann. NY Acad. Sci., 413, 1983, 238–253.
[11]	F. Grote, H. Frohlich, J. Strube, Integration of ultrafiltration unit operations in biotechnology process design, Chem. Eng. Technol., 34, 2011, 673–687.
[12]	F. V. Kosikowski, Low lactose yogurts and milk beverages by ultrafiltration, J. Dairy Sci., 62, 1979, 41–46.
[13]	A. W. Mohammad, C.Y. Ng, Y.P. Lim, G.H. Ng, Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control, Food Bioprocess Technol., 5, 2012, 1143–1156.
[14]	F. Lipnizki, Industrial applications of ultrafiltration in pharmaceutical biotechnology, Eng. Life Sci., 5, 2005, 81–83.
[15]	X. Li, X. F. Fang, R. Z. Pang, J. S. Li, X. Y. Sun, J. Y. Shen, W. Q. Han, L. J. Wang, Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling, J. Membr. Sci., 467, 2014, 226–235.
[16]	M. K. Sinha, M. K. Purkait, Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltration membrane, J. Membr. Sci., 464, 2014, 20–32
[17]	V. R. Pereira, A. M. Isloor, U. K. Bhat, A. F. Ismail, Preparation and antifouling properties of PVDF ultrafiltration membranes with polyaniline (PANI) nanofibers and hydrolysed PSMA (H-PSMA) as additives, Desalination, 351, 2014, 220–227.
[18]	K. Yadav, K. Morison, M.P. Staiger, Effects of hypochlorite treatment on the surface morphology and mechanical properties of polyethersulfone ultrafiltration membranes, Polym. Degrad. Stab., 94, 2009, 1955–1961.
[19]	A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian, Novel functionalized carbon nanotubes for improving the surface properties and performance of  Polyethersulfone (PES) membrane, Desalination, 286, 2012, 99–107.
[20]	Q. Shi, Y. L. Su, S. P. Zhu, C. Li, Y. Y. Zhao, Z. Y. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane, J. Membr. Sci., 303, 2007, 204–212.
[21]	H. T. Wang, L. Yang, X. H. Zhao, T. Yu, Q. Y. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone, Chin. J. Chem. Eng., 17, 2009, 324–329.
[22]	B. Van der Bruggen, Chemical modification of polyethersulfone nanofiltration membranes: a review, J. Appl. Polym. Sci., 114, 2009, 630–642.
[23]	J. Pieracci, J. V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci., 202, 2002, 1-16.
[24]	V. Vatanpour, S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, H. A. Monfared, TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance, Desalination, 292, 2012, 19–29.
[25]	Y. C. Chiang, Y. Chang, C. J. Chuang, R. C. Ruaan, A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes, J. Membr. Sci., 389, 2012, 76-82.
[26]	V. Moghimifar, A. Raisi, A. Aroujalian, Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles, J. Membr. Sci., 461, 2014, 69–80.
[27]	Y. Chang, Y. J. Shih, C. Y. Ko, J. F. Jhong, Y. L. Liu, T. C. Wei, Hemocompatibility of Poly(vinylidene fluoride) Membrane Grafted with Network-Like and Brush-Like Antifouling Layer Controlled via Plasma-Induced Surface PEGylation, Langmuir, 27, 2011, 5445-5455.
[28]	J. Wen, G. L. Wilkes, Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach, Chem. Mater. , 8, 1996, 1667-1681.
[29]	M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1991.
[30]	J. K. Kim, Y. D. Kim, T. Kanamori, H. K. Lee, K. J. Balk, “Vitrification phenomena in polysulfone/NMP/water system”, J. Appl. Polym. Sci., 71, 1999, 431-438.
[31]	F. C. Lin, D.M. Wang, J.Y. Lai, “Asymmetric TPX Membranes with High Gas Flux”, J. Membrane Sci., 110, 1996, 25-36.
[32]	M. L. Luo, J. Q. Zhao, T. Wu, P. C. Sheng, Hydrophilic modification of poly(ethersulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Appl. Surf. Sci., 249, 2005, 76–84.
[33]	R. Molinari, L. Palmisano, E. Drioli, M. Schiavello, Studies on various reactor configurations for coupling photocatalysis and membrane process in waterpurification, J. Membr. Sci. 206, 2002, 399–415.
[34]	R. Molinari, C. Grande, E. Drioli, L. Palmisano, M. Schiavello, Photocatalytic membrane reactors for degradation of organic pollutants in water, Catal. Today, 67, 2001, 273–279.
[35]	Z. S. Wang, T. Sasaki, M. Muramatsu, Y. Ebina, T. Tanake, L. Wang, M. Watanabe, Self-assembled multilayers of titania nanoparticles and nanosheets with polyelectrolytes, Chem. Mater., 15, 2003, 807–812..
[36]	G. Wu, S. Gan, L. Cui, Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Appl. Surf. Sci., 254, 2008, 7080-7086.
[37]	A. Razmjou, A. Resosudarmo, R. L. Holmes, H. Li, J. Mansouri, V. Chen, The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes, Desalination, 287, 2012, 271-280.
[38]	M. S. Muhamad, M. R. Salim, W. J. Lau, Preparation and characterization of PES/SiO2 composite ultrafiltration membrane for advanced water treatment, Korean J. Chem. Eng., 32, 2015, 2319-2329.
[39]	A. Sotto, A. Boromand, S. Balta, J. H. Kim, B. V. d. Bruggen, Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles, J. Mater. Chem., 21, 2011, 10311-10320.
[40]	J. Lin, W. Ye, K. Zhong, J. Shen, N. Jullok, A. Sotto, B. V. Bruggen, Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment, Chem. Eng. Process., 107, 2016, 194-205.
[41]	S. A. Kumar, S. Adam, W. Pearce, Investigation of seawater reverse osmosis fouling and its relationship to pre-treatment type”, Environ. Sci. Technol., 40, 2006, 2037–2044.
[42]	W. Ma, Y. Zhao, L. Wang, The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis, Desalination, 203, 2007, 256–259.
[43]	M. T. Hung, J. C. Liu, Microfiltration for separation of green algae from water, Colloids Surf., 51, 2006, 157-164.
[44]	D. A. Ladner, D.R. Vardon, M.M. Clark, Effects of shear on microfiltration and ultrafiltration fouling by marine bloom-forming algae, J. Membr. Sci., 356, 2010, 33-43.
[45]	J. B. Castaing, A. Massé, M. Pontié, V. Séchet, J. Haure and P. Jaouen, Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae, Desalination, 253, 2010, 71-77.
[46]	S. Li, S. G. J. Heijman, J. C. V. Dijk, Application of backwashing with demineralized water for UF fouling control in UF-RO desalination, Water Sci. Technol.: Water Supply, 11, 2011, 364-369.
[47]	A. Resosudarmo, Y. Ye, P. L. Clech, V. Chen, Analysis of UF membrane fouling mechanisms caused by organic interactions in seawater, Water Res., 47, 2013, 911-921.
[48]	Y. W. Kim, D. K. Lee, K. J. Lee, J. H. Kim, Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes, European Polym. J., 44, 2008, 932-939.
[49]	Q. Q. Li, J. D., L. J. Wu, Y. Huang, G. Tang, S. G. Min, Sucrose as chiral selector for determining enantiomeric composition of phenylalanine by UV–vis spectroscopy and chemometrics, Chin. Chem. Lett., 23, 2012, 1055-1058.
[50]	M. Khattab, F. Wang, A. H.A. Clayton, UV–Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478, Spectrochim. Acta, Part A, 164, 2016, 128-132.
[51]	Y. Vesga, F. E. Hernandez, Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region, Chem. Phys. Lett., 684, 2017, 67-71.
[52]	M. J. Velasco , F. Rubio , J. Rubio, J. L. Oteo, Hydrolysis of Titanium Tetrabutoxide. Study by FT-IR Spectroscopy, Spectrosc. Lett., 32, 1999, 289-304.
[53]	D. C. L. Vasconcelos, V. C. Costa, E. H. M. Nunes, A. C. S. Sabioni, M. Gasparon, W. L. Vasconcelos, Infrared Spectroscopy of Titania Sol-Gel Coatings on 316L Stainless Steel, Mater. Sci. Technol., 2, 2011, 1375-1382.
[54]	Z. Movasaghi, S. Rehman, I. u. Rehman, Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues, Appl. Spectrosc. Rev., 43, 2008, 134-179.
[55]	L. F. Greenlee, N. S. Rentz, Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics, Polymer, 103, 2016, 498-508.
[56]	Z. X. Low, Z. Wang, S. Leong, A. Razmjou, L. F. Dumée, X. Zhang, H. Wang, Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultra filtration Membranes by Incorporation of Nanoporous Titania Nanoparticles, Ind. Eng. Chem. Res., 54, 2015, 11188-11198.
[57]	J. N Shen, H. M Ruan, L. G Wu, C. J Gao, Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment, Chem. Eng. J. 168, 2011, 1272-1278.
[58]	N. Ghaemi, S. S. Madaeni, A. Alizadeh, P. Daraei, A. A. Zinatizadeh, F. Rahimpour, Separation of nitrophenols using cellulose acetate nanofiltration membrane:Influence  of  surfactant  additives, Sep. Purif. Technol., 85, 2012, 147–156.
[59]	M. Tang, J. Xue, K. Yan, T. Xiang, S. Sun, C. S. Zhao, Heparin-like surface modification of polyethersulfone membrane and its biocompatibility, J. Colloid Interface Sci., 386, 2012, 428-440.
[60]	H. E. Gottlieb, V. Kotlyar, A. Nudelman, NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities, J. Org. Chem., 62, 1997, 7512-7515.
[61]	M. Mumtaz, C. Labruge`re, E. Cloutet, H. Cramail, Synthesis of Poly (3,4-ethylenedioxythiophene) Latexes Using Poly(N-vinylpyrrolidone)-Based Copolymers as Reactive Stabilizers, J. Polym. Sci., Part A: Polym. Chem., 48, 2010, 3841-3855.
[62]	A. Franceschini, S. Abramson, V. Mancini, B. Bresson, C. Chassenieuxa, N. Lequeux, New covalent bonded polymer–calcium silicate hydrate composites, J. Mater. Chem., 17, 2007, 913-922.
[63]	C. S. Ong, W. J. Lau, P. S. Goh, B. C. Ng, A. F. Ismail, Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system, Desalin. Water Treat. 53, 2015, 1213–1223.
[64]	S. Majeed, D. Fierro, K. Buhr, J. Wind, B. Du, A. B. Fierro, V. Abetz, Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN)ultrafiltration membranes, J. Membr. Sci., 403-404, 2012, 101-109.
[65]	C. L Jiang, J. Nie, G. P. Ma, A Polymer/metal Core-Shell Nanofibers Membrane by Electrospinning with Electric Field and Application for Catalyst Support, RSC Adv., 6, 2016, 22996-23007.
[66]	A. A. Baqer, K. A. Matori, N. M. Al-Hada, A. H. Shaari, E. Saion, J. L. Y. Chyi, Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique, Res. in Phys., 7, 2017, 611-619.
[67]	L. F. Han, Z. L. Xu, L. Y. Yu, Y. M. Wei, Y. Cao, Performance of PVDF/Multi-nanoparticles composite hollow fibre ultrafiltration membranes, Iran. Polym. J., 19, 2010, 553–565.
[68]	H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties, Desalination, 326, 2013, 69-76.
[69]	B. E. Givens, Z. Xu, J. Fiegel, V. H. Grassian, Bovine Serum Albumin Adsorption on SiO2 and TiO2 Nanoparticle Surfaces at Circumneutral and Acidic pH: A Tale of Two Nano-Bio Surface Interactions, J. Colloid Interface Sci., 493, 2017, 334-341.
[70]	J. H. Li, Y. Y. Xu, L. P. Zhu, J. H. Wang, C. H. Du, Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance, J. Membr. Sci., 326, 2009, 659-666.
[71]	T. H. Bae, T. M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, J. Membr. Sci, 249, 2005, 1-8.
[72]	K. J. Kim, A.G. Fanen, R. Ben Aim, M. G. Liu, G. Jonsson, I. C. Tessaro, A. P. Broek, D. Bargeman, A comparative study of techniques used for porous membrane characterization: pore characterization, J. Membr. Sci., 87, 1994, 35-46.
[73]	J. Huang, K. Zhang, K. Wang, Z. Xie, B. Ladewig, H. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci., 423-424, 2012, 362-370.
[74]	S. Singh, K. C. Khulbe, T. Matsuura, P. Ramamurthy, Membrane characterization by solute transport and atomic force microscopy, J. Membr. Sci, 142, 1998, 111-127.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信